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Shin-INS: A Shin-Mounted IMU-based Inertial
Navigation System for Pedestrian

Jian Kuang, Dazhou Xia, Tao Liu, Qijin Chen, Xiaoji Niu

Abstract— Pedestrian dead reckoning, relying
on an inertial measurement unit (IMU), plays a
crucial role in the pedestrian positioning sys-
tem. However, existing step model-based meth-
ods suffer from low positioning accuracy, and
foot-mounted inertial navigation systems (Foot-
INS) require specialized shoe, limiting their ap-
plication to ordinary users. To address these is-
sues, this paper introduces a shin-mounted iner-
tial navigation system (Shin-INS) for pedestrians,
leveraging an IMU. Firstly, a novel static state de-
tector is proposed, enabling precise detection of
the foot-ground contact state by projecting IMU
observations to the ankle using lever-arm com-
pensation. Additionally, the zero position incre-
ment update is employed to effectively mitigate
velocity errors within the INS, thereby achiev-
ing accurate estimation of the user’s position.
Through tests conducted on both normal and
abnormal walking scenarios, the results demon-
strate that Shin-INS significantly enhances system installation convenience while achieving comparable positioning
performance compared to Foot-INS.

Index Terms— Pedestrian dead reckoning (PDR), foot-mounted inertial navigation system (Foot-INS), shin-mounted
inertial navigation system (Shin-INS), pedestrian navigation.

I. INTRODUCTION

PEDESTRIAN navigation systems (PNS) play a crucial
role in ensuring the safety of workers in indoor environ-

ments, particularly during high-stakes situations like fire and
emergency rescues [1]. Among the autonomous PNS methods,
inertial measurement unit (IMU)-based pedestrian dead reck-
oning (PDR) stands out as it operates independently of prior
information such as signal base stations or signal fingerprint
databases, making it unaffected by external conditions [2]–
[4]. The IMU-based PDR method relies on extracting regular
characteristics of different body parts during normal walking
and integrating IMU measurements to accurately estimate the
user’s pose. Two notable IMU-based PDR techniques are
step model-based PDR (S-PDR) and foot-mounted inertial
navigation systems (Foot-INS) [5]–[9].

S-PDR assumes that pedestrians move within a two-
dimensional plane and utilizes IMU observations to estimate
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the walking direction and empirical step length model to track
the user’s continuous position [3]. S-PDR is a versatile method
that can be applied to IMUs mounted on various body parts
such as handheld (i.e, smartphone) [3], wrist-mounted (i.e,
smartwatch) [10], [11], helmet-mounted [12], chest-mounted
[13], waist-mounted [14], pocket-mounted [15], [16], and foot-
mounted [5], [6]. Although S-PDR described in the literature
can achieve excellent positioning performance, the develop-
ment of S-PDR faces two significant challenges. Firstly, a
uniform step length estimation model that applies to all users
is not readily available. Empirical step models, such as linear
models [17], Weiberg models [18], and Kim models [19], etc.,
construct the functional correspondence between human body
parameters (e.g., height and weight), motion parameters (e.g.,
step frequency, acceleration and swing angle of leg) and real
distances, and can use low-precision sensors to stably estimate
the user’s walking distance. However, although the step length
estimation model demonstrates high accuracy when trained
on specific datasets, its performance significantly deteriorates
when applied to unknown users, owing to factors such as
height, weight, and walking habits variations [20]. Secondly,
there is limited availability of accurate methods for estimating
walking direction. In recent years, the research hotspot is the
attitude and heading reference system (AHRS) that integrates
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gyroscopes, accelerometers, and magnetometers. The sensor
heading estimation under complex environments and dynamic
conditions can be significantly improved. However, due to the
basic assumption adopted by S-PDR that the heading of the
sensor is consistent with the walking direction of the user
cannot be guaranteed, especially in the scene where the user
walks along the sideways, transverse, and backward directions,
accurately estimating the angle difference under complex user
habit differences remains an unsolved problem [21], [22].

Compared with S-PDR, Foot-INS utilizes the user’s foot
dynamic information captured by the foot-mounted IMU to
estimate the user’s step length and walking direction, pro-
viding higher and more robust positioning performance [7],
[23]. Foot-INS assumes periodic contact between the pedes-
trian’s feet and the ground and utilizes zero-velocity update
technology (ZUPT) to mitigate velocity errors in inertial
navigation. Skog et al. proposed the generalized likelihood
ratio test (GLRT), which detects the zero-velocity period by
comprehensively utilizing the information that the angular
rate is zero and the specific force is the projection of the
gravitational acceleration [24]. GLRT is the most widely used
threshold-based detection method for Foot-INS. Due to the
obvious difference in detection accuracy of GLRT based on
a fixed threshold in complex gait scenes, many researchers
try to adjust the threshold adaptively according to the user’s
motion state. Wahlström et al. [25] proposed to use Bayesian
theory and loss factors to determine the optimal threshold
for different walking modes. Ren et al. [26] and Zhang et
al. [27] established the relationship between linear velocity
and optimal threshold. Tian et al. [28] determined the optimal
threshold in different walking speeds according to the gait
frequency. Ma et al. [29] established an angular velocity model
to determine the optimal threshold in different walking states.
The current zero-velocity detection methods have been able to
meet the needs of normal gait scenarios of normal people, and
the stability of Foot-INS has been significantly improved.

However, the heading estimation in Foot-INS is either
unobservable or weakly observable when relying solely on
ZUPT [30]. To address the issue of heading drift, various
methods based on regular motion patterns have been proposed
[23], [31], [32]. The zero integrated heading rate (ZIHR) is a
basic heading constraint method that proves beneficial during
extended periods of user inactivity, such as standing still [23].
Straight-line constraints utilize the observation that pedestrians
tend to walk along straight lines between two points, effec-
tively reducing the drift in walking direction [33]. Inspired
by linear trajectory constraints, the heuristic drift elimination
(HDE) method based on building orientation is proposed to
control the heading drift error of Foot-INS [32], [34], [35].
HDE builds a heading fingerprint library by extracting building
orientation, which can provide absolute heading observation
information, but it is only applicable to the regular indoor
corridor environment. Additionally, in outdoor environments,
the absolute heading derived from magnetometer observations
can maintain the Foot-INS heading within an acceptable
error range, ensuring long-term stable position estimation. By
combining these methods, the positioning performance and
stability of Foot-INS have been significantly improved.

Indeed, Foot-INS has limitations in terms of its reliance
on specialized shoes with built-in IMUs, which are typically
suitable for specific individuals engaged in specialized tasks.
Special shoes hinders the scalability of Foot-INS as they are
specifically designed for binding with certain users, making
them less adaptable to common application scenarios like
tunnel inspections. Furthermore, the rigid contact between
the foot and the ground in Foot-INS poses the risk of
sensor saturation [36], [37], and the high dynamics of foot
movements can introduce significant sensor dynamic errors.
Additionally, the frequent impacts and weight exerted on the
foot during operation can considerably shorten the sensor’s
lifespan. Considering these challenges, an alternative approach
could involve mounting the IMU above the ankle to overcome
the aforementioned issues while achieving similar positioning
performance to Foot-INS. By relocating the IMU position, it
may be possible to alleviate the scalability and saturation risks
associated with foot-mounted sensors. This approach holds the
potential to offer improved flexibility and usability without
losing positioning performance in pedestrian navigation sce-
narios.

This paper introduces a shin-mounted inertial navigation
system (Shin-INS) based on an IMU, offering comparable po-
sitioning performance to Foot-INS. Shin-INS employs a sim-
ple knee pad installation method, ensuring system convenience
and making it feasible for widespread adoption of low-cost and
high-precision PDR among the general population. Based on
the objective fact that each position of shin undergoes a fixed-
point rotation around the ankle when the foot is in contact
with the ground, this paper utilizes lever arm compensation
combined with IMU observation to calculate the ankle ac-
celeration. On this basis, this paper proposes a novel zero-
velocity detector based on a calf-mounted IMU. To address
interference caused by the calf muscles, the paper presents a
zero position incremental update method based on lever arm
compensation (LA-ZPIU), which enables precise and stable
position estimation while suppressing undesired influences.
By leveraging these techniques, Shin-INS achieves accurate
and reliable positioning while maintaining user convenience,
making it a promising solution for widespread adoption in
various applications.

The remainder of the paper is organized as follows: The
movement analysis of human lower limbs is provided in
Section II. Section III proposes a shin-mounted IMU based
static period detection method. In Section IV, a Shin-mounted
inertial navigation system is proposed. Section V presents the
experimental results. Section VI discusses the performance of
lever-arm estimation in the Shin-INS. Section VII summarizes
the work of this paper and proposes a direction for future work.

II. MOVEMENT ANALYSIS OF HUMAN LOWER LIMBS

Figure 1 illustrates the continuous motion state of the foot
during one step cycle. During normal walking, the foot can
be categorized into dynamic and static periods. The static
period refers to the phase when the foot is in contact with
the ground, and its velocity is considered to be zero during
this time. This assumption forms the basis for achieving
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high-precision relative positioning in foot-mounted IMU-based
pedestrian dead reckoning. Methods that utilize IMUs installed
in non-foot positions often rely on empirical step models
to compensate for the absence of zero-velocity correction
[3], [10]–[16]. However, compared to foot-mounted inertial
navigation systems (INS), the step model-based method suffers
from significant performance degradation due to its poor
applicability to different user motion behaviors.

Based on the analysis of a substantial amount of walking
data from multiple users, we discovered that the relative posi-
tion relationship between the shin-mounted IMU and the ankle
remains constant throughout the step cycle. Figure 1 visually
demonstrates this relative positional relationship between the
shin and ankle during a step cycle. Although the Shin-IMU
does not exhibit a strict static state during the foot cycle, it
undergoes a fixed-point rotation around the ankle when the
foot is in contact with the ground. Leveraging this motion
criterion, we can project the IMU observations to the ankle
and establish a zero-velocity constraint by utilizing the fact
that the ankle’s velocity should be zero. By incorporating this
constraint, pedestrian dead reckoning (PDR) based on non-
foot-position mounted IMUs can also achieve robust position
estimation. This finding provides valuable insights into lever-
aging the continuous implicated motion between the shin and
ankle, enabling the development of accurate and reliable PDR
methods using IMUs placed in non-foot positions.

Swing Phase Swing PhaseStatic Phase

Fig. 1: The relative positional relationship between shin and
ankle in a step cycle. The red square is the shin-mounted IMU,
the red circle is ankle, and the orange dotted line is the relative
position vector of the two.

III. STATIC PERIOD DETECTION BASED ON A
SHIN-MOUNTED IMU

Assuming that an IMU is stably fixed at a certain position
of shin, the relative positional relationship between the IMU
and ankle is constant. The velocity relationship between IMU
and ankle in the navigation frame (n-frame) can be expressed
as [3]

vnankle = vn +Cn
b

(
ωb×

)
lb (1)

where vnankle and vn are the velocity at ankle and the
shin-mounted IMU in the n-frame, respectively, Cn

b is the
transformation matrix from the body frame (b-frame) to the
n-frame, ωb is angle rate output by the IMU, lb is the lever
arm (the position vector from the center of IMU to ankle) in
the b-frame .

Differentiating both sides of Eq. 1, we have

v̇nankle = v̇n + Ċn
b

(
ωb×

)
lb +Cn

b

(
ω̇b×

)
lb (2)

Subtracting the gravity vector from both sides of Eq. 2, and
projecting into the b-frame has [37]

f bankle = f b +
(
ωb×

) (
ωb×

)
lb︸ ︷︷ ︸

Centrifugal term

+
(
ω̇b×

)
lb︸ ︷︷ ︸

Euler term

(3)

where f bankle and f b are the specific force of ankle and IMU
in the b-frame, respectively, ω̇ is the angular rate acceleration.
We know that the specific force at ankle in the b-frame can
be decomposed into the specific force of IMU, the centrifugal
term, and the Euler term.

Based on the fact that the acceleration of ankle should
be zero when the foot is in contact with the ground, the
constructed static state detection criterion is given by

1

2N + 1

k+N∑
i=k−N

∥∥∥∥∥f bankle,i − g f̄ bankle∥∥f̄ bankle∥∥
∥∥∥∥∥ ≤ γ1 (4)

where f bankle is the specific force at the ankle estimated by
Eq. 3, f̄ bankle = 1

2N+1

∑k+N
i=k−N f

b
ankle,i is the mean specific

force, γ1 is the static state detection threshold set according
to experience, g = 9.8m/s2 is Earth’s gravity, 2N + 1 is
windows length for zero-velocity detection, ‖·‖ is the 2-norm
of the vector. Since the conditions for accurate measurement of
lb cannot be guaranteed for different users, γ1 is usually set to
roughly determine the motion state of the foot. The difference
between the maximum and minimum within the zero-velocity
period must satisfy a preset threshold is used to ensure zero-
velocity period detection accuracy.

Max
(∥∥f bankle∥∥k−N :k+N

)
−Min

(∥∥f bankle∥∥k−N :k+N

)
≤γ2(5)

where γ2 is the threshold set according to experience. To
weaken sensor noise and high-frequency motion interference,
IMU observations need to be low-pass filtered before being
used to detect stationary states, with a cutoff frequency of 4
Hz.

Figure 2 presents the test statistics estimated by four tra-
ditional methods and the proposed method during normal
walking. During the time period [6055, 6060], it is known
that the foot equipped with a sensor touches the ground a
total of four times. However, the test statistics obtained from
T||a||−V ar, T||a||, Tω , and TSHOE are all greater than 4 times,
there is an obvious false detection results. The test statistics ob-
tained by the proposed method are more clearly differentiated
between static and dynamic, allowing the best identification
of static periods. This improvement can be attributed to the
fact that the position corresponding to the shin-mounted IMU
does not possess a strict static state. By leveraging lever
arm compensation, the proposed method achieves dynamic
perception of the ankle, enabling more accurate detection
of the static state at the signal level. Overall, the results
showcased in Figure 2 highlight the superior performance
of the proposed method in terms of distinguishing between
the static and dynamic states during normal walking. The
utilization of lever arm compensation facilitates more precise
static state detection, addressing the challenges associated with
the absence of a strict static state in the position where the
shin-mounted IMU is installed.
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Fig. 2: Test statistics estimated by five methods in the normal
walking state. The red dots are the detected stationary state
moments. TProposed is the proposed detector, T||a||−V ar is
acceleration moving variance detector, T||a|| is acceleration
magnitude detector, Tω is angular rate energy detector, TSHOE
is stance hypothesis optimal detector (i.e., the classic method-
GLRT). Specific calculation methods for different detectors
can be found in [24].

IV. SHIN-MOUNTED INERTIAL NAVIGATION SYSTEM

The proposed zero-velocity detector plays a crucial role
in providing periodic velocity observation information during
normal walking, thus achieving a similar working condition
to Foot-INS. The algorithm flow of Shin-INS is depicted
in Figure 3. The INS Mechanization module estimates the
user’s position, velocity, and attitude by integrating the an-
gular rate and specific force measurements from the IMU.
Simultaneously, the navigation state is updated using three key
components: lever arm-based zero position increment update
(LA-ZPIU), zero velocity update (ZUPT), and zero integrated
heading rate (ZIHR). These updates are performed based on
the results obtained from the static state detection, ensuring
robust estimation of the pedestrian’s position.

No

Yes

Yes

IMU INS Mechanization

Static-State?

Low-Pass 
Filter

Time >1s

EKF

LA-ZPIU

ZUPT&ZIHR

State Error Feedback

Position

Velocity

Attitude

Fig. 3: Algorithm flow of Shin-INS.

A. Inertial Navigation Algorithm
INS mechanization is a typical inertial navigation algorithm,

and the entire solution process has very rigorous theoretical

logic. However, when dealing with low-quality MEMS-IMUs,
it is common to neglect small error corrections that may not
yield significant performance improvements, such as those
related to the Earth’s rotation. Consequently, a simplified
version of the INS mechanization can be expressed as follows
[3], [4]:

rnk =rnk−1 + vnk∆tk

vnk =vnk−1 +Cn
b,k

(
∆vbk +

∆θbk ×∆vbk
2

)
− gn∆tk

Cn
b,k=Cn

b,k−1

[
I + ∆θbk +

∆θbk−1 ×∆θbk
12

] (6)

where rn and vn are the position and velocity vectors in the n-
frame, respectively; Cn

b is the transformation matrix from the
b-frame to the n-frame; gn =

[
0, 0,−9.8

]T
is Earth’s gravity

vector; ∆vbk =
(
f̃ bk − bf,k

)
∆tk is the velocity increment

in the b-frame; f̃ b and bf are the acceleration and bias of
the accelerometer, respectively; ∆θbk=

(
ω̃bk − bω,k

)
∆tk is the

angle increment in the b-frame; ω̃b and bg are the angle rate
and bias of the gyroscope, respectively; ∆tk = tk − tk−1 is
the time interval between the (k− 1)-th and k-th epochs; and
“×” is the cross-product form of a vector.

B. Extended Kalman Filter
A error state Extended Kalman Filter (EKF) is used to

fuse the inertial navigation and motion constraint information.
The error state indicates the difference between the estimated
and real values. The 18-dimensional error state variables at k
moment are defined as

X =
[
δrn δvn φ δbω δbf δlb

]T
(7)

where δrn and δvn are the position and velocity error vectors
in the n-frame, respectively; φ is the attitude error vector;
δbω and δbf are the bias error vectors of the gyroscope and
accelerometer, respectively; δlb is the lever arm error vector in
the b-frame. The lever arm error is used as a parameter to be
estimated in the filter because the user’s height varies greatly,
and an accurate lever arm cannot be obtained through manual
measurement.

The gyroscope and accelerometer biases can be regarded as
a first-order Markov process, the lever arm can be treated as a
constant. Hence, the continuous system state model is derived
as follows [8]

Ẋ = FX +GW (8)

F =


03 I3 03 03 03 03

03 03 fn× Cn
b 03 03

03 03 03 03 −Cn
b 03

03 03 03 −1/τbf 03 03

03 03 03 03 −1/τbω 03

03 03 03 03 03 03

 (9)

G=


03 03 03 03 03

Cn
b 03 03 03 03

03 −Cn
b 03 03 03

03 03 I3 03 03

03 03 03 I3 03

03 03 03 03 I3

, W =


wf
wω
wbf
wbω
wlb

 (10)
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where F is the dynamic transform matrix; fn× is the skew-
symmetric matrix of fn; τbf and τbω are the correlation times,
which are set to 1800 s; G is the noise distribution matrix;
and W is the system noise, which is assumed to be zero-
mean Gaussian white noise with the correlation covariance
matrix Q; wf and wω are the measurement white noises of
the accelerometer and gyroscopes, respectively; wbf and wbω
are the driving white noises of the bias model; wlb is the white
noises of the lever arm model.

Because the MEMS IMU sampling interval ∆t (0.005 s)
is very small, and Fk∆t� I , the discrete-time system state
model can be derived as follows [23]

Xk = Φk,k−1Xk−1 +wk−1 (11){
Φk,k−1 = exp [Fk−1∆t] ≈ I18 + Fk∆t

Qk ≈ ∆t
2

(
Φk,k−1Gk−1QG

T
k−1Φ

T
k,k−1+GkQG

T
k

) (12)

where Φk,k−1 is the discrete transform matrix, Qk is the
covariance matrix of the discrete system noise wk−1, I18 is
an 18-dimensional identity matrix.

C. Zero Observation Model

1) Lever Arm based Zero Position Increment Update (LA-
ZPIU): When Eq. 4 and Eq. 5 are both true, the velocity of the
ankle should be zero. Based on this assumption, we construct
a zero-velocity observation vector

ṽnankle =
[
0 0 0

]T
+ nvn (13)

where nvn is measurement noise. By performing the pertur-
bation analysis, Eq. 1 can be written as

v̂nankle = v̂n + Ĉn
b

(
ω̂b×

)
l̂b

≈ vn + δvn

+ (I − φ×)Cn
b

(
ωb ×−δbω×

) (
lb + δlb

)
≈ vn + δvn +

(
Cn
b ω

b × lb
)
× φ

−Cn
b

(
lb×
)
δbω +Cn

b

(
ωb×

)
δlb

(14)

Then, the velocity error observation equation in the n-frame
can be written as

δzvn = v̂nankle − ṽnankle
= v̂nankle −

([
0 0 0

]T
+ nvnankle

)
≈ δvn +

(
Cn
b ω

b × lb
)
× φ−Cn

b

(
lb×
)
δbω

+Cn
b

(
ωb×

)
δlb − nvn

(15)

To address the issue of increased velocity noise and the
subsequent degradation of positioning performance caused by
the larger fluctuations of the shin compared to the foot, we
introduce a position observation model based on the constraint
that the ankle position remains unchanged during the static
period. This constraint implies that the position increment of
the ankle during the static period should be zero. We can
express the position increment observation equation in the n-
frame as follows

δz∆rn = ∆r̂nankle −∆r̃nankle (16)

where ∆r̂nankle and ∆r̃nankle is the predicted and observed
position increments in the n-frame. Substitute Eq. 15 into Eq.
16 to get

δz∆rn =

∫ tk

tk−1

v̂nankledt−
∫ tk

tk−1

ṽnankledt

≈
∫ tk

tk−1

δvndt+

∫ tk

tk−1

(
Cn
b ω

b × lb
)
× φdt

−
∫ tk

tk−1

Cn
b

(
lb×
)
δbωdt+

∫ tk

tk−1

Cn
b

(
ωb×

)
δlbdt

−
∫ tk

tk−1

nvndt

(17)

Assuming that the influence of system noise is small in a short
period of time (e.g., 0.3 seconds, the error of the state variable
can be considered to be a constant [38]. Solving Eq. 16 using
the rectangular integration method gives

δz∆rn≈
N∑
i=1

I3∆tiδv
n +

N∑
i=1

(
Cn
b,iω

b
i × lbi

)
×∆tiφ

−
N∑
i=1

Cn
b,i

(
lbi×
)

∆tiδbω +

N∑
i=1

Cn
b,i

(
ωbi×

)
∆tiδl

b

−n∆rn

(18)

where N is the number of epochs in the static period [tk−1, tk],
n∆rn is observation noise.

2) Zero Velocity Update (ZUPT): When the user is standing,
the shin is also close to a static state. At this time, the
observability of the lever arm will be severely reduced, and
LA-ZPIU will cause the estimated lever arm to deviate from
the real value. To avoid this problem, the zero-velocity update
will be triggered when Eq. 4 and Eq. 5 are satisfied for more
than 1 second. The velocity observation equation in the n-
frame [3] is given by

δzvn = v̂n − ṽn

= v̂n −
([

0 0 0
]T

+ nvn
)

≈ δvn − nvn

(19)

where nvn is observable noise. At the same time, assuming
that the change of the heading is caused by the integral of the
gyroscope (i.e., ZIHR), the corresponding heading observation
equation in the n-frame [3] is given by

δzψ = ψ̂ − ψ̃store
= ψ + δψ − (ψ + nψ)

=
[
∂ψ
∂φx

∂ψ
∂φy

∂ψ
∂φz

]
φ− nψ

=
[

C11C31

(C11)2+(C21)2
C21C31

(C11)2+(C21)2
−1
]
φ− nψ

(20)

where ψstore is the heading corresponding to the first epoch of
the stationary period, Cij is the element at row i and column
j of Cn

b , nψ is observable noise.

V. EXPERIMENTAL RESULTS
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A. Test Description
Figure 4 illustrates the positional relationship of the sensors

worn by the tester, including the foot, shin, and back. The
inertial modules are positioned at the heel and the shin,
respectively. Additionally, a GNSS receiver is installed in
the backpack. The inertial module utilized in the experiment
was developed by the WHU-i2Nav team and comprises a
MEMS IMU, power module, Bluetooth low energy module,
memory module (SD card), and a powerful general-purpose
multi-protocol system-on-chip. To achieve time synchroniza-
tion between multiple devices, time stamps are transmitted to
smartphones via Bluetooth. Table I provides an overview of
the main technical characteristics of the inertial module. As the
test area is an open sky environment, GNSS offers a position
reference with centimeter-level accuracy for evaluating the
performance of the positioning system.

Foot-mounted IMU

Calf-mounted IMU

GNSS Receiver

Fig. 4: The relative positional relationship between foot-
mounted IMU, shin-mounted IMU, and GNSS receiver.

TABLE I: Main characteristics of the inertial module

Parameters Gyroscope Accelerometer

Data rate 200 Hz 200 Hz
Dynamic range 2000 ◦/s 16 g
Bias instability 10 ◦/h 0.2 mg

White noise 0.24 ◦/
√
h 0.06 m/s/

√
h

Weight ≈ 50 g
Size (no shell) 32× 25× 12 mm
Battery power continuous work for more than 10 hours

We conducted a positioning performance evaluation of four
different schemes, namely:

1) Foot-INS: This scheme utilizes zero-velocity update
(ZUPT) and zero-integrated heading rate (ZIHR), without
incorporating additional observations such as linear constraints
or magnetometer observations based on user-specific motion
trajectory shapes and positioning environments [8].

2) Step-Shin-INS: This scheme is based on the empirical
step model for pedestrian dead reckoning (PDR) [3].

3) ZUPT-Shin-INS: This scheme incorporates lever arm
compensation-based zero velocity update (ZUPT) as described
in Equation 14.

4) ZPIU-Shin-INS: This scheme employs lever arm
compensation-based zero position increment update (ZPIU) as
shown in Equation 15.

Since all four schemes are relative positioning methods, we
aligned the initial 10-meter length of each test trajectory with
the reference trajectory. This alignment process allows for the
initialization of position and heading for the different schemes.

We conducted a comprehensive evaluation of the proposed
method’s positioning performance using both simple and com-
plex walking states. The simple walking state involved users
walking in the direction they were facing, including straight-
line trajectories and polygonal trajectories. On the other hand,
the complex walking state included users walking forward,
walking sideways, and walking laterally, introducing more
challenging scenarios for position estimation. By evaluating
the proposed method under different walking states, we aimed
to assess its robustness and accuracy in various real-world
pedestrian navigation scenarios.

B. Simple Walking Test

1) Straight-line Trajectory: We conducted 16 tests on a 50-
meter-long straight runway, with 4 testers (3 males and 1
female) walking the same straight trajectory 4 times. The tra-
jectories estimated by using Foot-INS, Step-Shin-INS, ZUPT-
Shin-INS, and ZPIU-Shin-INS are shown in Figure 5. To
evaluate the accuracy of the position estimation, we calculated
the end position errors for each scheme. Figure 6 presents
the end position errors of the 16 test trajectories for the four
schemes. The average end position errors across the 16 tests
are as follows: 1.26m for Foot-INS, 7.30m for Step-Shin-
INS, 1.21m for ZUPT-Shin-INS, and 1.05m for ZPIU-Shin-
INS. These results indicate that the proposed ZPIU-Shin-INS
scheme outperforms the other schemes in terms of accuracy,
with the lowest average end position error among the four
tested methods.

Among the four schemes evaluated, Step-Shin-INS shows
the worst positioning performance. This can be attributed to
the limitations of the empirical step model, which fails to ac-
curately estimate the user’s walking distance due to variations
in factors such as height and weight. On the other hand, Foot-
INS, ZUPT-Shin-INS, and ZPIU-Shin-INS achieve accurate
estimation of the user’s walking distance by employing pe-
riodic zero-velocity correction. This is mainly possible due
to the high short-term relative positioning accuracy provided
by the strapdown inertial navigation algorithm. Both ZUPT-
Shin-INS and ZPIU-Shin-INS demonstrate similar positioning
performance to Foot-INS, indicating that a shin-mounted IMU
can replace a foot-mounted IMU without sacrificing accuracy.
This offers improved convenience for pedestrian dead reckon-
ing systems. Furthermore, ZPIU-Shin-INS outperforms ZUPT-
Shin-INS in terms of positioning performance. This is because
the shin is not strictly a rigid body affected by muscles,
making it difficult to satisfy the assumption of zero-velocity
correction. The position increment method used in ZPIU-
Shin-INS mitigates the impact of instantaneous violations of
the zero-velocity assumption by integrating velocity over a
period of time. This improves the observability of the lever-

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3312631

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on September 28,2023 at 01:11:12 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

arm parameters and enables more precise estimation of the
walking distance.

Fig. 5: The estimated 50-m straight-line trajectories in 16 tests.

Fig. 6: End point position error of the estimated 50-m straight-
line trajectories in 16 tests.

2) Polygon Trajectory: We conducted 4 polygon trajectory
tests, with each test performed by a different user. The
estimated trajectories using Foot-INS, Step-Shin-INS, ZUPT-
Shin-INS, and ZPIU-Shin-INS are shown in Figure 7. To
evaluate the position error of these trajectories, we plot the
cumulative density function (CDF) of the position error in
Figure 8. Step-Shin-INS exhibits more significant distance
estimation errors and heading drift errors when following
polygonal trajectories compared to straight-line trajectories.
This can be attributed to the challenges posed by turning
trajectories, which introduce inaccuracies in the step length
model. Additionally, the shin-mounted IMU is subject to
unpredictable external accelerations during complex trajecto-
ries, further degrading the performance. The accelerometer
observations alone are insufficient to accurately estimate the

horizontal attitude, leading to increased heading drift rate.
In contrast, Foot-INS, ZUPT-Shin-INS, and ZPIU-Shin-INS
demonstrate similar positioning errors, regardless of whether
the trajectory is straight or polygonal. This suggests that the
zero-velocity correction methods are robust to the shape of
the test trajectory. They effectively compensate for position
estimation errors and maintain accuracy, regardless of the path
followed by the user.

Fig. 7: The estimated polygon trajectories in 4 tests.

Fig. 8: Cumulative density function (CDF) of the position
error of the estimated polygon trajectories in 4 tests.

Table II provides statistics on the position error of the
polygon trajectory estimated by Foot-INS, Step-Shin-INS,
ZUPT-Shin-INS, and ZPIU-Shin-INS in the 4 tests. The aver-
aged position errors of Foot-INS are 2.20m (Mean), 2.75m
(68%), and 3.87m (95% confidence level). For Step-Shin-
INS, the averaged position errors are 7.79m, 9.45m, and
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17.19m, respectively. ZUPT-Shin-INS yields averaged posi-
tion errors of 2.78m, 3.43m, and 5.15m, while ZPIU-Shin-
INS achieves averaged position errors of 1.71m, 2.11m, and
3.24m. Compare with ZUPT-Shin-INS, the mean positioning
error of ZPIU-Shin-INS is reduced by 38%, indicating a
greater improvement in positioning performance compared to
a straight-line trajectory. This improvement can be attributed
to the fact that complex user movements, such as turning,
lead to more pronounced shaking, which affects the accuracy
of ZUPT-based methods. Additionally, the average position
error of ZPIU-Shin-INS is 0.5m smaller than that of Foot-
INS. This can be attributed to the foot-mounted IMU experi-
encing significant sensor dynamic errors due to hard contact
with the ground and large motion state changes. Lever-arm
compensation enables accurate detection of the foot-ground
contact period using ankle acceleration, which supports robust
pedestrian positioning. In summary, ZPIU-Shin-INS demon-
strates a higher level of positioning performance improvement
compared to both straight-line trajectories and Foot-INS. The
accuracy achieved by leveraging ankle acceleration for foot
contact detection is sufficient for robust pedestrian positioning.

TABLE II: Position error statistics of the estimated polygon
trajectories in 4 tests.

Test
Foot-INS Step-Shin-INS ZUPT-Shin-INS ZPIU-Shin-INS

Mean 68% 95% Mean 68% 95% Mean 68% 95% Mean 68% 95%

1
2
3
4

2.32
2.07
2.30
2.11

2.81
2.32
3.43
2.58

4.54
3.66
4.61
2.93

8.77
3.86
8.31

13.06

10.24
4.77
10.16
16.08

16.77
7.21

21.96
32.84

4.36
1.79
2.27
3.37

5.35
2.24
2.83
4.09

7.49
3.32
4.18
6.75

2.76
0.90
1.67
2.04

3.86
1.12
2.11
2.16

4.74
1.54
4.12
3.65

Mean 2.20 2.75 3.87 7.79 9.45 17.19 2.78 3.43 5.15 1.71 2.11 3.24

C. Complex Walking Test
In the complex walking test, the testers were instructed to

switch their walking styles in the order of forward walking,
sideways walking, and lateral walking. Since the heading
of the sensor cannot be assumed to be consistent with the
walking direction in a complex walking state, Step-Shin-INS
cannot accurately reconstruct the user’s true motion trajectory.
Therefore, the positioning performance of Step-Shin-INS is
not evaluated in this case. Figure 9 displays the 4 complex
walking trajectories estimated by Foot-INS, ZUPT-Shin-INS,
and ZPIU-Shin-INS. Figure 10 presents the cumulative density
function (CDF) of the position error for the estimated complex
walking trajectories in the 4 tests. In test 1, there is a jump phe-
nomenon on the left side of the trajectory estimated by ZUPT-
Shin-INS. This jump can be attributed to the low dynamics of
the foot during abnormal walking states, which may lead to
misjudgment of the static state period. However, ZPIU-Shin-
INS incorporates a delay processing mechanism to identify and
mitigate misjudgment of the static state, resulting in improved
estimation accuracy. Furthermore, it is observed that complex
walking patterns do not exhibit significant anomalies in the
trajectories estimated by all the methods, including Foot-
INS, ZUPT-Shin-INS, and ZPIU-Shin-INS. This indicates that

the proposed methods can handle complex walking states
effectively and provide accurate trajectory estimation without
significant deviations or anomalies.

Table III presents the position error statistics of the com-
plex trajectories estimated by Foot-INS, ZUPT-Shin-INS, and
ZPIU-Shin-INS in the 4 tests. The average position errors
of Foot-INS are 0.63m (Mean), 0.82m (68%), and 1.10m
(95%), while those of ZUPT-Shin-INS are 0.90m, 1.27m, and
1.88m. For ZPIU-Shin-INS, the average position errors are
0.60m, 0.73m, and 1.22m. It is evident that the zero-velocity
correction-based methods exhibit lower overall position er-
rors in the complex trajectory tests compared to the simple
trajectory scenario. This can be attributed to the increased
contact time and reduced dynamics of the foot when walking
sideways or laterally. Moreover, the positioning errors of
ZPIU-Shin-INS and Foot-INS are nearly identical, indicating
that the abnormal gait introduces a longer time zero-velocity
corrections and complex dynamic interference.

Fig. 9: The estimated complex walking trajectories in 4 tests.

TABLE III: Position error statistics of the estimated complex
walking trajectories in 4 tests.

Test
Foot-INS ZUPT-Shin-INS ZPIU-Shin-INS

Mean 68% 95% Mean 68% 95% Mean 68% 95%

1
2
3
4

0.51
0.71
0.77
0.52

0.65
0.92
1.14
0.58

0.87
0.98
1.65
0.84

0.91
1.10
0.62
0.98

1.47
1.58
0.86
1.16

2.02
2.47
1.13
1.88

0.40
0.64
0.49
0.85

0.51
0.58
0.73
1.08

0.69
1.70
0.84
1.67

Mean 0.63 0.82 1.10 0.90 1.27 1.88 0.60 0.73 1.22

VI. DISCUSSION

The concept of Shin-INS involves projecting the velocity
of a shin-mounted IMU onto the ankle, ensuring the physical
feasibility of zero-velocity correction. The accuracy of the
lever arm, which represents the positional relationship between
the center of the shin-mounted IMU and the ankle, directly
impacts the improvement in position performance achieved

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3312631

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Wuhan University. Downloaded on September 28,2023 at 01:11:12 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

Fig. 10: Cumulative density function (CDF) of the position
error of the estimated complex walking trajectories in 4 tests.

through zero-velocity correction. Therefore, real-time online
estimation of the lever arm is essential in Shin-INS to account
for variations in user height and IMU installation position.

Figure 11 illustrates the estimated lever arm and correspond-
ing standard deviations obtained from a single test using the
proposed method. The plot demonstrates that the lever arm
exhibits good observability and remains stable after conver-
gence. The standard deviation curve indicates that the lever
arm is only observable during the user’s normal walking state,
typically taking approximately 100 seconds (i.e., [50, 150] s)
to converge. This can be attributed to the minimal rotation of
the calf around the ankle during foot contact and the significant
influence of sensor noise and calf muscle interference. Hence,
ensuring a sufficient convergence time is crucial for achieving
optimal performance in Shin-INS.

Fig. 11: The estimated 50-m straight-line trajectories in 16
tests.

In general, when the initial values of the lever arm parame-
ters are reasonably accurate, Shin-INS can achieve comparable
positioning performance and applicability to Foot-INS. One
advantage of Shin-INS is that it does not rely on customized
shoes, making it more user-friendly for ordinary individuals.
However, in the initialization stage, if the lever arm parameters

are unknown, the positioning performance of Shin-INS can be
significantly compromised. In this scenario, Shin-INS cannot
match the positioning performance of Foot-INS while still
maintaining its plug-and-play feature.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel shin-mounted inertial navigation
system (Shin-INS) utilizing an IMU. Shin-INS employs lever
arm compensation in conjunction with shin-IMU measure-
ments to derive ankle acceleration. It introduces a static state
detector that improves the accuracy of zero-velocity interval
estimation compared to traditional methods. Additionally, a
lever-arm compensation-based zero position incremental up-
date method (LA-ZPIU) is proposed to enhance position
estimation robustness by mitigating disturbances caused by
calf muscles. The experimental results obtained from both
normal and abnormal walking tests demonstrate that Shin-
INS achieves positioning performance that is comparable to
Foot-INS. In summary, Shin-INS effectively enhances the
convenience of system installation without compromising per-
formance.

This paper primarily focuses on analyzing the positioning
performance of Shin-INS during normal walking speeds. How-
ever, there is still a need to investigate the performance of
Shin-INS in complex pedestrian gaits and challenging posi-
tioning environments. In future research, it is recommended to
conduct further evaluations of Shin-INS in scenarios involving
running and on uneven terrain to assess its positioning capa-
bilities under these conditions. Additionally, efforts should be
made to enhance the robustness of the positioning system to
ensure reliable performance in various real-world scenarios.
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