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Abstract
To suppress the positioning error of wheeled robots in global navigation satellite system
(GNSS) denial environments, kinematic constraints should be fully utilized. However, many
wheeled robots have independent steering mechanisms for each wheel to move more flexibly,
which do not meet the nonholonomic constraint in the vehicle frame. Hence, the conventional
GNSS/inertial navigation system (INS)/ODO (odometer) integrated navigation algorithm
(GIOW algorithm) is no longer suitable. We propose a GIOW algorithm to meet the need for
all-wheel steering robot positioning. In the proposed algorithm, odometer speed and wheel
angle are employed together to construct a kinematic constraint for wheeled robots, which can
constrain the rapid drifting error of INS. Moreover, the odometer scale factor and wheel angle
error are augmented into the error state of the extended Kalman filter to be estimated and
compensated online. Field tests were carried out in an open-sky environment with a wheeled
robot, which can run in both corner steering mode and all-wheel steering mode. The
experimental results showed that the proposed algorithm can be applied to not only the corner
steering motion model but also the all-wheel steering motion model. The accuracy of the
proposed algorithm was almost the same as that of the conventional GNSS/INS/ODO algorithm
in the corner steering motion model. In the all-wheel steering motion model, the accuracy of the
proposed algorithm was maintained.

Keywords: GNSS/INS integration, all-wheel steering, nonholonomic constraint, odometer,
wheel angle

(Some figures may appear in colour only in the online journal)

1. Introduction

With the rapid development of the robot industry, accurate
and continuous positioning for robots has become particularly
important. The integration system of the global navigation
satellite system (GNSS) and low-cost inertial navigation sys-
tem (INS) has been extensively applied in the navigation field,
which can fully utilize the advantages of the two subsystems
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to provide continuous position, velocity, and attitude [1–3].
However, GNSS signal interference and outages frequently
arise in urban environments, and the error of low-cost INS
accumulates quickly without GNSS assistance, which leads to
rapid deterioration of the positioning accuracy of the integra-
tion system [4, 5]. Hence, it is urgent for robots to maintain
positioning accuracy when GNSS signals are blocked.

An odometer, with low cost and good reliability, is
a commonly used sensor for wheeled carriers. GNSS,
INS, and odometer (ODO) fusion navigation is currently
a mainstream solution. However, most GNSS/INS/ODO
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Figure 1. Robot motion models.

integration solutions are based on vehicular constraints and
do not consider robot kinematic constraints, which are called
conventional vehicular constraint algorithms in this paper. The
conventional vehicular constraint algorithm is based on a non-
holonomic constraint (NHC) in a vehicle frame [6–9]. The
vehicle frame (v-frame) is the vehicle’s body frame and rep-
resents the orientation of the vehicle. The NHC in the v-frame
refers to the fact that if wheels do not skid or jump, the v-
frame velocity in the plane perpendicular to the longitudinal
direction is almost zero. The theory is valid in the vehicle
motion model (Ackermann motion model), but not in other
robot motion models.

Howard et al summarized five motion models of wheeled
robots [10], as shown in figure 1. The skid-steering motion
model has no steering mechanism, and the steering is carried
out by the differential speed of wheels on both sides. Wheel
slips need to be considered in the kinematic constraint for this
model. Jingang et al developed a kinematic modeling method
to analyze the skid-steering motion model [11]. The omni-
directional motion model is the most capable model, allowing
motion in any direction in the local tangent plane. The speed
of each wheel is represented by the translation and rotation
vectors in the robot frame [12]. These two models are not the
focus of this paper.

The Ackermann steering and corner steering motion mod-
els are less flexible models because their linear velocities
are constrained along the longitudinal direction of the v-
frame. The Ackermann motion model is extensively employed
in four-wheeled carriers, while the corner steering motion
model is usually used in six-wheeled robots. The conventional
vehicular constraint algorithm is applicable to these two mod-
els and has been exhaustively studied for decades. Here, an

odometer is installed on the nonsteer wheel to provide longit-
udinal velocity observation in the v-frame. The nonsteer wheel
refers to the rear wheel in the Ackermann motion model or
the middle wheel in the corner steering motion model. The
NHC can be combined with the odometer, and therefore a
three-dimensional velocity observation at the nonsteer wheel
in the v-frame is constructed to constrain the drifting error of
the INS [8].

The all-wheel steering motion model also allows motion in
any direction in the local tangent plane but is restricted by the
NHC in wheel frame. The wheel frame (w-frame) represents
the orientation of the middle wheel, which has a horizontal
angle with the v-frame, as shown in figure 1. The angle is
called wheel angle in this paper. Since the movement direc-
tion of this model is along the longitudinal direction of the
w-frame, the odometer cannot be employed independently in
this model. Therefore, the wheel angle needs to be considered
in the navigation algorithm.

In fact, angle information has been used in some conven-
tional vehicular constraint methods. Gao utilized the steering
angle to constrain the tangent of the lateral and longitudinal
velocities at the front wheels of a vehicle, which were derived
from odometer and yaw rate sensors. The biases and scale
factors of the steering angle were estimated in the extended
Kalman filter (EKF) [13, 14]. Dixon et al obtained the odo-
meter speed of four wheels and steering angle from the anti-
lock brake system of a vehicle and built redundant expres-
sions describing the Ackerman motion model, ‘which allowed
for better distance measurements via redundancy and addi-
tionally provided relative yaw angle measurements by differ-
encing wheel speed’ [15]. The steering angle is regarded as
redundant information in the above methods, which makes
the algorithm robust. However, the steering angle refers to the
turning angle of the vehicle, while the wheel angle is the angle
of the wheel relative to the vehicle. In figure 1, the steering
angle of the all-wheel steering motion model is zero, but the
wheel angle is not.

Considering the wheel angle, we propose a GNSS/IN-
S/ODO/wheel angle integrated navigation algorithm (GIOW
algorithm) for the all-wheel steering motion model. This
algorithm can also be applicable to the corner steering motion
model. The key points of our work are as follows:

• Error state vector construction: model the errors of odometer
and steering mechanism, augment odometer scale factor and
wheel angle error into the error state of the EKF, and then
estimate and compensate for them online.

• Robot kinematic constraint: employ the NHC combined
with the odometer speed and wheel angle to construct a w-
frame velocity observation.

The remainder of this paper is organized as follows.
Section 2 describes the details of the GIOW algorithm. In
section 3, the analysis and discussion of the experimental res-
ults are presented to evaluate the performance of the algorithm.
Section 4 discusses conclusions and future work.
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Figure 2. Algorithm overview.

2. Methodology

The GIOW algorithm adds robot kinematic constraints based
on the GNSS/INS solution, as shown in figure 2. The
GNSS/INS solution is a classic method where the position
error measurement is input into the EKF to constrain the drift-
ing error of the INS [16, 17]. The procedure of the robot kin-
ematic constraint is as follows:

(a) Obtain the w-frame longitudinal velocity by the odometer
speed and the wheel angle. Construct a three-dimensional
velocity observation by combining the NHC with the lon-
gitudinal velocity.

(b) Calculate the difference between the w-frame velocity
observation and the velocity result derived by INS.

(c) Estimate the error state of the EKF, including the nav-
igation error (position error, velocity error, and attitude
error), inertial measurement unit (IMU) error, odometer
scale factor, and wheel angle error.

(d) The navigation error is used to correct the position result,
velocity result, and attitude result. The IMU error, odo-
meter scale factor, and wheel angle error are compensated.

The error state equation and observation equations are the
core of the EKF. In section 2.1, the error state and error state
equation are constructed. Then the observation equation is
derived in section 2.2.

2.1. Error state vector

As a part of the error state, the navigation error includes the
position error δrn, velocity error δvn, and attitude error ϕ. The
perturbation models of these errors are described in [18].

The IMU is composed of a three-axis gyroscope and a
three-axis accelerometer. The error model of the gyroscope
can be expressed as

ω̂b
ib = (I+ sg)ωb

ib+ bg+wg

δωb
ib = ω̂b

ib−ωb
ib = sgωb

ib+ bg+wg (1)

where δωb
ib is the error of the angular velocity, bg is the residual

biases, sg is the residual scale factors, and wg is the measure-
ment noise. The error model of accelerometer can be described
as

f̂
b
= (I+ sa)f b+ ba+wa

δf b = f̂
b
− f b = sa · f b+ ba+wa (2)

where δf b is the error of the specific force, ba is the residual
biases, sa is the residual scale factors, and wa is the measure-
ment noise.

The measurement noise of the gyroscope and accelero-
meter, wg and wa, are integrated into angle random walk
(ARW) and velocity random walk (VRW), respectively. Val-
ues of the VRW and ARW are usually determined through the
Allan variance analysis [19]. The biases and scale factors of
the gyroscope and accelerometer are commonly modeled as
first-order Gauss-Markov processes [20], where wbg, wba, wsg,
and wsa are the noise of the evolution of these errors.

There are errors of the given speed from the odometer and
the given wheel angle from the steering mechanism. The odo-
meter speed is correlated with the pulse number per second
sensed by the odometer, the tooth number per rotation, and the
diameter of the wheel tire [14]. The wheel diameter is affected
by tire pressure, temperature, and tire wear; therefore, the odo-
meter scale factor should be considered [21]. The error model
of the odometer speed can be expressed by

v̂odo = (1+ sodo)
NPulseπd
NTeeth

(3)

where sodo is the odometer scale factor, NPulse is the number of
pulses per second, NTeeth is the number of teeth per rotation,
and d is the wheel diameter.

The steering mechanism will be worn after long term use,
and the wheel angle error cannot be ignored. The error model
of the wheel angle can be expressed by

θ̂ = θ+ δθ (4)

where δθ is wheel angle error.
Since the odometer scale factor and the wheel angle error

change slowly, they are modeled as random walks with small
driving noise,

ṡodo = wodo

δθ̇ = wθ (5)

where wodo and wθ are driving noise.
In conclusion, the error state vector is constructed as

x=
[
(δrn)T (δvn)T ϕT bg

T ba
T sgT saT sodo δθ

]T
. (6)

And the error state equation can be expressed as

ẋ(t) = F(t)x(t)+G(t)w(t)

w(t) =
[
wgT waT wbgT wbaT wsgT wsaT wodo wθ

]T
(7)

where F is the dynamics matrix [18],G is the noise-input map-
ping matrix and w is the noise vector.

3



Meas. Sci. Technol. 32 (2021) 115122 Z Zhang et al

Figure 3. Robot motion model. (a) Corner steering motion model.
(b) All-wheel steering motion model.

2.2. Robot kinematic constraint

TheGNSS observation equation in theGNSS/INS solution has
been given in previous work [18]. The observation equation of
the robot kinematic constraint is elaborated in this section.

The details of the corner steering motion model and the
all-wheel steering motion model are shown in figure 3(a) and
figure 3(b), respectively. If both the left middle wheel and the
right middle wheel are equipped with odometers, the virtual
center wheel (the center of two wheels) is considered in the
GIOW algorithm. Otherwise, the wheel equipped with odo-
meter is considered. The following takes the virtual center
wheel as an example.

The origin of the v-frame is the virtual center wheel. Its
X-axis points toward the forward direction of the vehicle’s
motion, its Y-axis points toward the right side of the vehicle,
and its Z-axis completes a right-handed orthogonal frame, i.e.
forward-transversal-down. The w-frame has its origin coincid-
ing with that of the v-frame. Its X-axis points toward the for-
ward direction of the middle wheels, its Z-axis coincides with
that of the v-frame, and its Y-axis completes a right-handed
orthogonal frame, i.e. forward-transversal-down.

In the corner steering motion model, the robot turning can
be regarded as moving around the virtual point O, and the vir-
tual center wheel’s movement direction is always parallel to
the carrier’s (as shown in figure 3(a)). This model is equival-
ent to the Ackerman motion model. We can easily obtain the
longitudinal velocity by measuring the speed of two middle
wheels with an odometer. Assuming that the turning radius is
ρ, turning angular velocity is ω, and wheel track is 2d, then the
speeds of the left and right middle wheels are given by

vl = ω(ρ− d)

vr = ω(ρ+ d). (8)

The virtual center wheel’s longitudinal velocity is

vodo = ωρ=
vl + vr

2
. (9)

Equation (9) still holds in the all-wheel steeringmotionmodel.
If wheels do not skid or jump, the velocity in the plane

perpendicular to the longitudinal direction is almost zero

according to the NHC. Therefore, the three-dimensional velo-
city at the virtual center wheel in the w-frame can be expressed
as

vwodo = [vodo 0 0]T. (10)

Taking the odometer scale factor (sodo) and the velocity meas-
urement noise (ev) into consideration, the w-frame velocity at
the virtual center wheel measured with the odometer can be
expressed as

ṽwodo = (1+ sodo)vwodo + ev. (11)

The v-frame is not parallel to the w-frame in the all-wheel
steering motion model, as shown in figure 3(b). Therefore, it
is necessary to introduce the wheel angle θ to describe this
model. The direction cosine matrix from the v-frame to the
w-frame can be written as

Cw
v =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1


θ = (θl+ θr)/2. (12)

Here, θ is equal to 0 in the corner steering motion model, and
thus Cw

v degenerates to the identity matrix.
After projecting the velocity derived by INS onto the virtual

center wheel in the w-frame, we can obtain

vwodo = vvodo = Cw
vC

v
b(C

b
nv
n
imu+(ωb

nb×)lbodo)

= Cw
vC

v
b(C

b
nv
n
imu − (ωb

in×)lbodo − (lbodo×)ωb
ib) (13)

where Cv
b is the direction cosine matrix of the IMU mounting

angle which is given by the method in [22], vnimu is the velocity
of the IMU, lbodo is the lever-arm from the IMU to the virtual
center wheel, and (ωb

nb×)lbodo is the lever-arm effect.
The perturbation model of equation (13) can be expressed

as (ignoring second-order small quantities)

Ĉw
v =

 cos(θ+ δθ) sin(θ+ δθ) 0
−sin(θ+ δθ) cos(θ+ δθ) 0

0 0 1


≈

 cosθ− sinθδθ sinθ+ cosθδθ 0
−sinθ− cosθδθ cosθ− sinθδθ 0

0 0 1


= Cw

v

I+

 −sinθ cosθ 0
−cosθ −sinθ 0

0 0 0

δθ

 (14)

v̂wodo = v̂vodo = Ĉw
bC

v
b[Ĉ

b
nv̂
n
imu − (ωb

in×)lbodo − (lbodo×)ω̂bib]

= ĈwvC
v
b[C

b
n(I+ϕ×)(vnimu + δvnimu)− (ωb

in×)lbodo

− (lbodo×)(ωb
ib+ δωb

ib)]

≈ vwodo + ĈwvC
v
b[C

b
nδv

n
imu −Cb

n(v
n
imu×)ϕ− (lbodo×)δωb

ib].
(15)
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Combining equations (14) and (15), the w-frame velocity at
the virtual center wheel derived by INS can be written as

v̂wodo = vwodo +Hθδθ+Cw
vC

v
b(C

b
nδv

n
imu

−Cb
n(v

n
imu×)ϕ− (lbodo×)δωb

ib)

Hθ =

 −sinθ cosθ 0
−cosθ −sinθ 0

0 0 0

vvodo. (16)

Combining equations (11) and (16), the w-frame velocity
error measurement equation at the virtual center wheel can be
expressed as

zwodo = v̂wodo − ṽwodo
= Cw

vC
v
bC

b
nδv

n
imu −Cw

vC
v
bC

b
n(v

n
imu×)ϕ

−Cw
vC

v
b(l

b
odo×)δωb

ib− vwodosodo+Hθδθ− ev. (17)

In addition, the observation equation can be written as

zwodo = Hodox− ev

Hodo = [03×3 Cw
vC

v
bC

b
n −Cw

vC
v
bC

b
n(v

n
imu×) 03×3

−Cw
vC

v
b(l

b
odo×)diag(ωb

ib) 03×3 vwodo Hθ] (18)

where Hodo is the observation matrix.
For the corner steering motion model, θ in Hθ is equal to

0, and δθ is not considered; therefore, equation (17) degener-
ates into the equation in the conventional vehicular constraint
algorithm. Consequently, the GIOW algorithm is compatible
with the conventional vehicular constraint algorithm. The con-
ventional vehicular constraint algorithm is just a special case
of our proposed GIOW algorithm.

Moreover, the IMU mounting angle (Cv
b) contains error,

which is ignored in the conventional vehicular constraint
algorithm. The wheel angle error (Ĉwv ) estimated in the EKF
absorbs part of the error of Cv

b in the GIOW algorithm.
In addition, in the all-wheel steering motion model, the

odometer speed cannot be employed without the wheel angle.
However, the wheel angle can be employed independently,
and only the NHC is used in this case. The observation
equation degenerates to

zwodo =

[
vwodo,y

vwodo,z

]
−

[
0

0

]
=

[
Hodo,y

Hodo,z

]
x− ev. (19)

3. Experimental results and discussion

The wheeled robot platform with a six-wheel chassis is shown
in figure 4. The odometer speed and the wheel angle of the
two middle wheels are derived from the chassis. The odo-
meter resolution is 800 pulses per resolution and the wheel
diameter is 15 cm. More information of the robot chassis can
be found at www.dalurobot.com/page15.html. In addition, the
robot carries two GNSS antennas, a MEMS IMUADIS16465,
and a navigation-grade INS POS620. The front GNSS antenna
receives the GNSS signal to provide positioning result for two

Figure 4. Wheeled robot platform.

Table 1. Technical parameters of the IMUs used in the experiments.

IMU ADIS16465 POS620

Gyro bias stability (◦ h−1) 2 0.02
Angle random walk (◦ (

√
h)−1) 0.15 0.003

Accelerometer bias stability (mGal) 0.36 0.01
Velocity random walk (m s−1 (

√
h)−1) 0.012 0.03

IMUs. Centimeter-level real-time kinematic (RTK) position-
ing results are utilized for integrated navigation. The main
technical parameters of the two IMUs are listed in table 1.
The introduction of reference system and test system are as
below.

The reference system contains the RTK results and the
POS620 data. The RTK results and the POS620 data were
fused in a commercial integrated navigation software, and the
results after reverse smoothing were taken as the ground truth.

The test system contains the RTK results, the ADIS16465
data, the odometer speed and the wheel angle. The RTK res-
ults and the ADIS16465 data are collected in a data acquisi-
tion module, which is the product of our previous work and
takes STM32F767 (ST Microelectronics, 2017) as the control
processing core. Time synchronization of all data in the test
system is implemented in it. The initial navigation state of the
test system needs to be given before data fusion. After the RTK
results were available, the test system was stationary for ini-
tial alignment. The initial position was provided by the RTK
results. We could obtain the initial roll angle and pitch angle
through the angular velocity of the earth’s rotation and gravity
[23]. The initial yaw angle was provided by dual-antenna [24].
To evaluate the performance of the GIOW algorithm, GNSS
simulation outages were used in the test system. After the ini-
tial alignment of the test system, the RTK results were artifi-
cially interrupted for 30 s every 120 s. The test system fused

5
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Figure 5. Test trajectory. Map data ©2021 Google.

Table 2. Processing modes in experiment 1 (corner steering only).

Mode
Odometer
speed

Odometer
scale factor

Wheel
angle

Wheel angle
error

#1 N N N N
#2 Y N N N
#3 Y Y N N
#4 Y Y Y Y

Mode #1: There is no auxiliary information. This mode is just the
GNSS/INS solution, which is in contrast to evaluating the performance of
the GIOW algorithm.
Mode #2: On the basis of Mode #1, the odometer speed combined with the
NHC are added to constrain the drifting error of the INS. The observation
equation in this mode is equation (18), but sodo and δθ are not considered.
This mode is set to show the effect of ignoring the odometer scale factor.
Mode #3: On the basis of Mode #2, the odometer scale factor is estimated
and compensated. The observation equation in this mode is equation (18),
but δθ is not considered. This mode is just the conventional vehicular
constraint solution.
Mode #4: On the basis of Mode #3, the wheel angle is considered, and the
wheel angle error is estimated and compensated. This mode is the GIOW
solution, where the observation equation is equation (18).

the RTK results with outages, the ADIS16465 data, the odo-
meter speed, and the wheel angle to provide continuous and
accurate positioning result.

Figure 5 shows the test trajectory, which is in a fully open
sky condition. We performed two experiments on the rubber
track of a playground. The track could be regarded as a hori-
zontal plain. Experiment 1 was from 438 080 s to 440 180 s
(GPS seconds of week), during which the robot’s motion was
corner steering. Experiment 2 was from 440 180 s to 442 050 s,
during which the robot’s motion was a mix of corner steering
and all-wheel steering.

3.1. Results of experiment 1 (corner steering only)

The corner steering motion model is employed in experiment
1. Four modes are listed in table 2.

The results of the four modes are compared with the truth to
obtain the position error, which is shown in figure 6. The RMS
of the position error during outages is counted and recorded in
table 3.

Figure 6. Position error in experiment 1.

Table 3. RMS of position error during outages.

Mode
Horizontal

position error (m) Height error (m)

#1 1.52 0.36
#2 0.67 0.03
#3 0.15 0.03
#4 0.15 0.03

Figure 7. Estimation of sodo and δθ.

From table 3, it can be found that the horizontal position
error in Mode #2 is reduced by 56% compared to that of Mode
#1, and the error in Mode #3 is reduced by 78% compared to
that of Mode #2. However, compared to Mode #3, the position
error is not obviously changed in Mode #4. This is because the
wheel angle is 0◦ in the corner steering motion model, which

6
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Table 4. Processing modes in experiment 2 (mixed steering).

Mode
Odometer
speed

Odometer
scale factor

Wheel
angle

Wheel angle
error

#1 N N N N
#2 N N Y N
#3 N N Y Y
#4 Y Y Y Y

Mode #1: There is no auxiliary information (the GNSS/INS solution).
Mode #2: On the basis of Mode #1, the wheel angle is considered to use the
NHC in the w-frame. The observation equation in this mode is equation
(19), but δθ is not considered. This mode is set to show the effect of missing
the wheel angle error.
Mode #3: On the basis of Mode #2, the wheel angle error is estimated and
compensated. The observation equation in this mode is equation (19).
Mode #4: On the basis of Mode #3, the odometer speed is considered, and
the odometer scale factor is estimated and compensated (the GIOW
solution). The observation equation in this mode is equation (18).

Figure 8. Attitude error in experiment 2.

has little effect in the GIOW algorithm. The experimental res-
ults show that the GIOW algorithm has the same perform-
ance as the conventional vehicular constraint algorithm in the
corner steering motion model. Overall, the horizontal position
accuracy of the GIOW algorithm is improved by approxim-
ately 90% compared to that of the GNSS/INS solution.

In addition, sodo and δθ are estimated online in Mode #4,
and their estimation are shown in figure 7. After convergence,
the odometer scale factor is nearly 0.023, and the wheel angle
error is nearly −2.0◦. These error cannot be ignored. The res-
ults of Mode #2 show the effect of the odometer scale factor,
which decreases the horizontal position error by 78% com-
pared to Mode #3. The effect of the wheel angle error is shown
in experiment 2.

Table 5. RMS of attitude error during outages.

Mode Roll error (◦) Pitch error (◦) Yaw error (◦)

#1 0.03 0.04 0.23
#2 0.03 0.02 0.89
#3 0.02 0.02 0.23
#4 0.02 0.02 0.22

Note: The yaw angle error of Mode #2 is largest in all four modes.

Figure 9. Position error in experiment 2.

3.2. Results of experiment 2 (mixed steering)

The mixed motion of corner steering and all-wheel steering is
employed in experiment 2. Since experiment 1 evaluated the
effect of the odometer speed and the odometer scale factor,
we did not repeat them in experiment 2 and focused on the
wheel angle and the wheel angle error. Four modes are listed
in table 4.

The attitude error of the four modes is shown in figure 8,
and the RMS of this error during outages is recorded in table 5.
We find that the yaw angle error of Mode #2 is notably worse
than that of the other cases. This is due to the lack of estimation
of wheel angle error, which leads to deterioration of the yaw
angle accuracy of the navigation system if not compensated.
The error is compensated in Modes #3 and #4, and therefore
the yaw angle accuracy is at the same level as that of Mode #1.

The position error in experiment 2 is shown in figure 9, and
the RMS of this error during outages is recorded in table 6. The
horizontal position error is reduced gradually, and the height
error is also reduced significantly. Overall, the horizontal pos-
ition accuracy of the GIOW algorithm is improved by approx-
imately 92% compared to that of the GNSS/INS solution,
which has almost the same performance with experiment 1.
The experimental results show that the GIOW algorithm can
be applicable to the all-wheel steering motion model and
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Table 6. RMS of position error during outages.

Mode
Horizontal

position error (m) Height error (m)

#1 2.11 0.31
#2 1.04 0.03
#3 0.66 0.03
#4 0.17 0.03

the corner steering motion model, and the accuracy of the
algorithm was maintained.

The estimation of sodo and δθ in Mode #4 is almost equi-
valent to that in experiment 1.

4. Conclusion

To solve the issue that the conventional vehicular constraint
algorithm cannot be applied to robots with the all-wheel steer-
ing motion model, we have proposed a GIOW algorithm,
which can be applied to the all-wheel steering motion model
and the corner steeringmotionmodel. The odometer speed and
the wheel angle are employed to construct a w-frame velo-
city observation to constrain the rapid drifting error of INS
when the GNSS signal is denied. The source code and a demo
for the GIOW algorithm are available at https://github.com/
i2Nav-WHU/GIOW-release.

The experimental results showed that the GIOW algorithm
has good adaptability in the two motion models. In the corner
steering motion model, the same performance as the conven-
tional vehicular constraint algorithm was observed. In the all-
wheel steering motion model, to which the conventional con-
straint algorithm cannot be applied, the accuracy of the GIOW
algorithm was maintained. Moreover, the deterioration of the
yaw angle accuracy due to the wheel angle error was over-
come. An additional benefit of the GIOW algorithm was that
the wheel angle error estimated in the EKF could absorb part
of the IMU mounting angle error.

In fact, the GIOW algorithm which employs the robot kin-
ematic constraint can be regarded as a general model that cov-
ers most of the wheeled carriers with no skidding. The con-
ventional vehicular constraint algorithm is simply a special
case of the GIOW algorithm. In future work, we plan to verify
and improve the GIOW algorithm onmore wheeled robots and
engineering vehicles.
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