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matching based on pedestrian dead reckoning
for smartphone indoor positioning
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Abstract— Magnetic field signals are ubiquitous, stable, and have
little effect on the human body. Due to these qualities magnetic field
matching (MFM) has become a popular indoor positioning method
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geolocation community. However, the need to frequently calibrate | —"7 " ——| | Candidate 2 ,—/
the magnetometer bias seriously undermines the applicability and - Trajectories T
stability of MFM. In this paper we present a magnetometer bias d Posiion _ Positn_ AtuIqy
insensitive MFM based on pedestrian dead reckoning (PDR) for Magnetic Field| | . | Reference MFP |, |Reference MFP!
smartphones in the indoor environment. An inertial navigation sys- MER (Y i) Simiaity
tem based PDR is designed for generating the relative trajectory Calculation
and attitude. The relative trajectory is used to correlate the magnetic | |\agnetometer ,l Observed MFP
field feature time sequence to improve the distinguishability and the | (b-frame) Posiion

attitude is used for projecting the reference magnetic field feature from n-frame to b-frame, to perform the MFM in the b-
frame to eliminate the influence of the magnetometer bias. The results of eight experiments in four smartphones showed
that the proposed method could effectively eliminate the influence of the magnetometer’s bias in the MFM, and finally

reached mean positioning accuracy of 0.77 m (RMS).

Index Terms—INS, PDR, MM, indoor positioning, magnetic matching, pedestrian navigation

[. INTRODUCTION

OCATION based service (LBS) is gradually changing

people’s lifestyles and work styles through services such
as positioning and navigation, social networking, precise ad-
vertising, and emergency rescue [1]. As global navigation
satellite systems (GNSSs) are hindered by signal attenua-
tion and blockage in certain environments (e.g., indoor and
subterranean environments), a number of indoor positioning
technologies have been developed for providing ubiquitous lo-
cation services, such as pseudo-satellites [2], ZigBee [3], ultra-
wideband (UWB) [4], audio positioning [5], radio frequency
identification (RFID) [6], WiFi [7], magnetic field matching
(MFM) [8]and pedestrian dead reckoning (PDR) [9].

Due to the huge difference in cost and accuracy, it is chal-
lenging for a positioning technology fulfill the requirements of
specific scenarios with complex and diverse indoor structural
environment [10]. For consumer applications, the successful
requirements of which are low-cost and wide-area coverage,
the positioning technology is severely limited. As magnetic
field signals are ubiquitous, stable, and have little effect on
the human body, the magnetic field feature based method has
become one of the mainstream indoor positioning methods [8].
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MFM is not commonly used as a standalone technique for
similar magnetic field features (MFFs) can be found in many
different places. To alleviate this issue, MFM is integrated with
other techniques such as PDR and wireless localization [11].
Many MFM methods have been used to provide positioning
services. Particle filter (PF) based MFM methods [12] have a
simple deign where the filter individually processes a magne-
tometer measurement while the PDR is used to propagate the
state of particles and recursively re-samples a set of particles
according to the comparison between the measured and the
reference MFFs to converge on the true position. The best
performance can be obtained by setting thousands of particles.
However, heavy calculation of PF is still a problem that needs
to be solved urgently for smartphones.

Dynamic time warping (DTW) based methods [13] provide
a precise position for users by revisiting the historical trajec-
tory stored in the magnetic field map during the positioning
phase. Because an effective constraint cannot be formed for
the user’s walking trajectory in an open area, the positioning
performance of these methods are usually unstable. An alter-
native is to combine the grid magnetic field map and the PDR
algorithm to adapt to the impact of different indoor scenes by
real-time estimation of user trajectory [8]. DTW is currently
the most widely used MFM method due to its low calculation
and stable positioning performance.

Although MFM can provide a high-precision position, the
magnetometer built in smartphones is vulnerable to ferromag-
netic material (e.g., the magnets inside audio speakers and
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buzzers) or strong electric currents, which often result in a
magnetic distortion known as soft and hard iron effects [14]-
[16]. These magnetic influences of soft magnetic effects can be
reduced through careful circuitry design [14]. Hard iron distor-
tion causes an equivalent bias in magnetometer measurements
that needs to be accurately calibrated and compensated [15].
Several methods have been proposed for compensating the
bias of magnetometers in the literature. The conventional ”co0”
motion-based magnetometer bias calibration requires user to
calibrate it for dozens of seconds or more [17], and other
calibration techniques that require extra knowledge of the
magnetic field at the location of interest are not available in
standard indoor environments [16].

Many researchers have employed the differential MFF
(DMFF) to reduce the influence of the magnetometer bias.
[18] assumes that the projection of the magnetometer bias
in the vertical direction can be regarded as a fixed value;
therefore, the DMFF in the vertical direction is independent
to the magnetometer bias. Similarly, [10] uses the horizontal,
vertical, and amplitude of the DMFF. [19] uses the variance of
the MFF between two consecutive steps instead of using the
MEFF to avoid the magnetometer bias. The above methods can
only achieve the expected performance when the fluctuation
of the smartphone attitude is small. However, it is almost
impossible for the user to hold the smartphone in a fixed
posture and only walk on a straight track; thus, the change
in the attitude of the smartphone will prevent the DMFF in
the n-frame from eliminating the magnetometer bias.

In this study, we assume that the magnetometer’s bias has
not changed over short time periods (e.g., 15 s), and that the
misalignment angle between the mobile phone’s orientation
and the user’s walking direction is small. A strapdown inertial
navigation system (INS) based PDR is designed to generate
the relative trajectory of a user and the attitude (i.e., absolute
roll, pitch and relative heading) of the smartphone. The
relative trajectory is used to correlate the MFF to improve
the distinguishability and reduce the search area by predicting
the current position in the positioning phase. The attitude
coming from PDR and the absolute heading search algorithm
in the MFM are used for obtaining the conversion relationship
from the navigation frame (n-frame) to the sensor frame (b-
frame), to perform the MFM in the b-frame for eliminating the
influence of the magnetometer bias. In addition, the output of
MFM is employed to control the position error of PDR, which
will further improve the positioning performance by estimating
the scale of the user’s step length. Finally, four smart phones
of different brands are used to verify the feasibility and
positioning performance of the method in this study.

The contributions of the present paper are summarized as
follows: Based on the relative trajectory and attitude of the
smartphone generated by PDR, a magnetic field matching
algorithm without magnetometer bias correction is designed.
The algorithm uses the PDR algorithm to estimate the attitude
of the mobile phone in real-time, and no longer assumes
that the change of the attitude of the mobile phone is small,
so as to truly realize the magnetic field matching algorithm
independent of the magnetometer bias.

The remainder of the paper is organized as follows: Section

IT analyzes the feasibility of using the differential magnetic
field feature in the b-frame to eliminate the magnetometer bias,
Section III describes the indoor positioning solution process;
Section IVgives a detailed description of the INS-based PDR
algorithm, including INS mechanization, the designed EKF,
and pedestrian motion constraint; Section V shows a detailed
description of the magnetic field matching algorithm; Section
VI investigates the positioning performance of the proposed
method through field tests; Section VII discusses the proposed
method; and Section VIII details our conclusions.

[I. DIFFERENTIAL MAGNETIC FIELD FEATURE

Based on the simplified model of the magnetometer mea-
surements, the relationship between magnetometer observa-
tions and the reference MFF in the n-frame can be described
as

M" = CrMb = Cp (Mb - bm) (1)

where M? represents the reference magnetic field feature in
the b-frame, while M? and b., represent the measurements and
bias of the magnetometer, respectively, M ™ represents the ref-
erence MFF in the n-frame, C}' represents the direction cosine
matrix from b-frame to n-frame. Given that the reference MFF
at two positions M{* and M3, and the difference between the
two can be described as

My — M7 = Cp, MY — CP MY + (Cfy — CFy) b (2)

From Eq. 2, we know that the magnetometer bias can
be eliminated when Cj'; and Cj', are approximately equal,
such as the user holds the smartphone steadily and walks in
a straight trajectory. However, it is unrealistic for the user
to keep the attitude of the smartphone fixed and only walk
in a straight line. Fig. 1 shows the horizontal, vertical, and
amplitude of the DMFF (at 10 Hz) obtained with a smartphone
(Google Pixel2) in the real environment, where the red and
blue lines represent the calibrated and un-calibrated DMFF
in the n-frame, respectively. Due to the existence of a large
magnetometer bias (approximately 600 milligauss), the weak
fluctuation of the horizontal angle still causes the vertical
component of the DMFF to fluctuate sharply (as shown in
Fig. 1-(b)). Additionally, the change of the heading angle
formed by the turning motion of the user directly destroys the
waveform shape of the horizontal and amplitude (as shown in
Fig. 1-(a) and (c)).

The magnetometer bias is a fixed vector in the b-frame for
a period of time (e.g., 15 s); therefore, we change the Eq. 1
to derive

MY = (C)'M™ + by, 3)

Then, the DMFF between the two given positions in the b-
frame can be described as

Y Y n \T n \T 3 n
My — M} = (Cha)” My — (Cy'y)" MY 4)

Eq. 4 shows that the DMFF in b-frame will no longer be related
to the magnetometer bias. Thus, the most critical issue is
how to accurately obtain Cj' and its corresponding geographic
position. The following chapters of this article will describe in
detail how to use the relative trajectory and attitude provided
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Fig. 1. The horizontal, vertical and amplitude of the DMFF. (a)
Horizontal, (b) Vertical, (c) Amplitude.

by PDR to implement the MFM algorithm that is independent
of the magnetometer bias.

I1l. SYSTEM OVERVIEW

The efficacy of magnetic field matching is limited by two
factors: 1) the indoor MFF has a low discriminability when in
position; 2) the magnetometer bias suffers relatively extreme
drift and requires frequent calibration. The relative trajectory
provided by PDR can be used to improve the discriminability
of MFF and reduce the search area of the MFM algorithm by
predicting the current position while the attitude provided by
PDR is able to obtain the conversion relationship between the
navigation (n-frame) and sensor (b-frame) frames to eliminate
the effects of magnetometer bias. In addition, the results of
MFM are used to correct the position error of the PDR and
estimate the error of the sensor and the step length. Thus,
with low system construction cost, MFM/PDR considerably
improve the usability of the system by using complementary
characteristics of the two, which may help solve the problem
of indoor positioning of consumers in the future.

Fig. 2 shows the detailed process of INS-based PDR based
magnetic field matching for smartphone indoor positioning.
The system can be divided into two parts: the INS based
PDR method and magnetic matching algorithm. Gyroscope
and accelerometer measurements are used to perform INS
mechanization and determine the user’s motion states (i.e.,
static or walking), and the virtual velocity measurements from
the user’s motion are employed for controlling the velocity
error, which assist in improving the estimation accuracy of
the relative trajectory and attitude.

Based on the relative trajectory estimated by INS-based
PDR, many candidate trajectories are generated by adjusting
the translation and rotation parameters. The corresponding
reference magnetic field profile (MFP) in the n-frame can be
obtained by querying in the magnetic field map. The attitude
is used to convert the reference MFP from n-frame to b-frame.
Currently, the observed MFP is generated by correlating the

relative trajectory coming from the INS-based PDR and the
magnetometer observations. Thus, the current position of the
user can be determined by calculating similarities between the
differential observed and reference magnetic profiles.

To obtain a more accurate relative trajectory and predicted
current position, the MFM output will be used to control the
position error of the INS-based PDR and estimate errors in
the sensors and step length.
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Fig. 2. The detailed process of INS-based PDR based magnetic field
matching for smartphone indoor positioning.

IV. INS-BASED PEDESTRIAN DEAD RECKONING

The relative trajectory coming from the PDR method are
necessary to improve the distinguishability of the MFFE. As
the step-model based PDR method separates the position error
from the sensors error, estimating the sensors error cannot
be achieved by correcting the position error. Additionally, the
output frequency is low (e.g., 2 Hz), which cannot reflect the
actual movement of the user. This study use an INS-based
PDR method to generate relative trajectory for improving po-
sitioning performance of the magnetic field matching method.

A. INS Mechanization

The INS mechanization mainly provides current position,
velocity, and attitude by continuously integrating the gyro-
scope and accelerometer output, using an algorithm with a
long development history and a rigorous theoretical structure.
Due to the low performance of smartphone sensors, the com-
plex error corrections in the rigorous INS mechanization (e.g.,
earth rotation) cannot bring about improvements in navigation
performance. Therefore, the simplified INS mechanization is
given by [9], [20], [21]

R =rp_ +up Aty
vp =vp_, + Cgfk (Avg) — g" Aty
Cir=Cir [I + Aﬁzx]

(&)

where ™ and v™ are the position vector and the velocity vector
in the n-frame, respectively, C}' is the transformation matrix
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]T is the

from the b-frame to the n-frame, g" = [0 0 —g
Earth gravity vector, Av? = ( fl—0 f,k) Aty is the velocity

increment in the b-frame, f b and b ¢ are the acceleration and
bias of the accelerometer, respectively. A#? = ((Z)Z — bgyk.) Aty
is the angle increment in the b-frame, &® and by are the angle
rate and bias of the gyroscope, respectively. At =t —tj_1 is
the time interval between the (k — 1)-th and k-th epoch, and
“x 7 is the cross-product form of a vector.

B. Extended Kalman Filter

The position error of the INS mechanization algorithm
grows quadratically with time, and the navigation performance
depends substantially on the sensor accuracy. For smartphone
built-in inertial sensors, the estimated position of the INS
mechanization method will develop an error of more than 10 m
in a few seconds, well beyond acceptable parameters for real
world application. However, pedestrian motion characteristics
can be used to construct virtual observations, thereby slowing
down the cumulative speed of the position errors. An extended
Kalman filter is used to fuse the constraint information coming
from pedestrian motion and INS. The 16-dimensional error
state variables are defined as

Se=[6m sum ¢ by Sby bs ] ©6)
where Jr", dv™ are the position and velocity error vector in
the n-frame, and ¢ is the attitude error vector. 6b,, db, are
the bias error vectors of the gyroscope and accelerometer, ds
is the scale error of step length. Because the empirical model
cannot adapt to different users, the step scale factor is used
as an estimation variable for improving the accuracy of the
step-length estimation.

The discrete linearization of the system error model can be
expressed as follows:

0xp -1 = Prr—10Th—1 k-1 + Wk
0z = Hpdwp p—1 + v

(7

where the subscripts £ — 1 and k represent the epoch, dz is
the measurement misclosure vector, H is the design matrix,
w is the process noise, v is the measurement noise, and P is
the 16 x 16 state transition matrix

I3 I3At 03 03 03  03x1
03 13 (f]?X) At 03 Cl?,kAt 03><1
O3 O3 I3 —CngAt O3 O3x1
D = ; 8
ko k=1 03 O3 03 I3 03 O3x1 ®
03 O3 03 03 I3 O3x1
01x3 O1x3  0O1x3  O1x3  O1xz 1

where 03 and I3 are 3 x 3 zero matrix and identity matrix, 013
and O3y are 1x3 and 3x 1 zero matrix. When the observations
are valid, the following methods are used to update the state
variables and corresponding covariance [20].

0% = 0&p k-1 + Kk (021 — HpZp j—1) )
Po=(I — KyHy,) Poj1(I — K Hy)" + K R KL (10)

—1
Ky = Py o1 H (He Py HE + Ry) (11)

C. Pedestrian Motion Constraint

User movement can be divided into two states: standing still
and forward motion. There are multiple ways to use the output
of tri-gyroscopes and tri-accelerators to distinguish the state of
the user [9]. When the state of the pedestrian is determined to
be standing, the velocity can be reasonably considered to be
zero. A velocity observation equation in the n-frame for zero
velocity is given by:

62y =07, —[0 0 0] =60"4n,

wms

(12)

where 77, is the velocity vector coming from the INS mech-
anization in the n-frame and n,, is the measurement noise. In
addition, the assumption of constant heading is also commonly
used to reduce the accumulation error of the heading. However,
weak motion from the user’s arm will destroy the above
assumption; therefore, the constant heading is not considered
for ensuring the stability of the system in this study.

When the user walks forward regularly, the lateral and
vertical velocities in the body coordinate system should be
zero [9], because a pedestrian generally walks on a plane
and rarely walk sideways or backwards. The walking velocity
can be estimated by step detection and step length. The peak
detection algorithm is employed to detect a step event for
its lower computation, and the Weinberg model is utilized
to estimate the step length due to less-estimated parameters
[22]. Thus, the virtual velocity measurement in the b-frame
are expressed as follows:

(il [ (s+ds)L/At 0 0 ]T+nv

walking —

i (13)

=0 qiking + | L/AL 0 0] s +n,
S atking = | SL/At 00 1" represent the velocity
measurement in the b-frame, L is the estimated step length
from the Weinberg model, s and ds are the scale and scale
error of step length, and At is the time interval between two
adjacent steps. The predicted velocity from INS mechanization
in b-frame can be expressed as

+ Ch5u™ — Cb (v x) ¢

where v?

b _ Absn b
Vins = Cnvins ~ Vins

(14)

where v} . is the velocity vector in the n-frame coming from

the INS mechanization, v? . = Cto? _ is the velocity in the
b-frame and the velocity observation equation in the b-frame
is given by [9], [20], [23]

82y =07 — o°

(15)
=C5u™ — Cb (v x) ¢ — [ L/At 0 0 ]T55+nv

V. MAGNETIC FIELD MATCHING ALGORITHM

The MFM positioning scheme mainly consists of two
phases: magnetic field map generation and online positioning.
In the magnetic field map generation phase, a one-to-one
correspondence between the geographic coordinates and the
MFF is established. In the online positioning phase, the
current position of the user is determined by calculating the
similarities between the measured MFF and the reference MFF
from the magnetic field map (i.e., magnetic field matching
algorithm).
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As this study focuses on the MFM algorithm, no detailed
description of the magnetic field map generation are provided;
the similar method can be found in [8]. And the difference is
that this paper uses a pedestrian positioning and orientating
system (P-POS) to provide the coordinates of the data collec-
tion trajectory and the attitude of the smartphone. The P-POS
has low cost and simple operation, and can provide decimeter-
level position and degree-level attitude estimation, the detail
algorithm can be found in [25].

A. Observed Magnetic Field Profile

The MFF of one position contains at most three-dimensional
components (i.e., the north, east, and vertical components),
which is insufficient to distinguish different locations. There-
fore, the magnetometer measurements in a period of time
(i.e., the MFF time sequence) is usually used as the basic
unit for the magnetic field matching algorithms. Considering
the strong correlation between the MFF distribution and the
spatial structure, we correlate the MFF time sequence with the
relative trajectory generated by the PDR (i.e., MFP) [9]. The
directional changes and distance to the adjacent MFF can be
given by the magnetic profile in addition to the interval time of
the adjacent MFF. An observed magnetic field profile follows:

(G, MY
oMFP = e (16)
i (CF), MY
where " = [n ¢] represents the north and east position, C}*
represents the transformation matrix from the b-frame to the
n-frame, M represents the measurements of magnetometer,
and k represents the length.

Although the relative trajectory generated by PDR also have
deformation errors (such as heading drift error and the scale
error of step length), the scale error of step length can be
estimated by using the results of the MFM to update navigation
state. For the heading drift error, the test results of a large
number of documents show that the cumulative error of PDR
in a short time (such as 15 s) is negligible [9]; therefore, this
study does not consider the heading drift error of the magnetic
profile.

B. Candidate Reference Magnetic Field Profiles

After the MFFs and the relative trajectory are correlated,
the MFM algorithm can be described as finding the conver-
sion relationship (i.e., the translation and rotation parameters)
between the relative trajectory and the absolute trajectory.
Because the absolute trajectory and the conversion relationship
must both be solved, they cannot be solved directly by
analytical mathematics. Here, we determine the conversion
relationship by enumerating all possible reference trajectories.
In order to control the computational load, the low precision
predicted position (such as 10 m) and the radius of the search
region (such as 10 m) are parameters determined in advance.

Fig. 3 demonstrates using the traversal method to generate
candidate trajectories. First, we extract the relative trajectory .S
generated by PDR, then rotate Af around the left endpoint of

S to obtain trajectory S’, then translate An along the north-
south direction to obtain trajectory S”, and finally translate
Ae along the east-west direction to obtain trajectory S’

An

Ae

Fig. 3. The generation process of the candidate trajectories.

The trajectory S’ can be expressed as

7"1”; = C (AY;) (rj” — ) 4+ + Arf (17)
N _ | cos(Af;) —sin(Ad;)
C(A0) = sin (Af;)  cos (A6;) (18)
where 77" are the position of the j-th point of the relative

J

trajectory, respectively, r7; is the position of the j-th point of
. . . T

the i-th candidate trajectory, Ar? = [ An; Ae; | and A6;

are the translation and rotation parameters from the relative

trajectory to the i-th candidate trajectory, the subscript “j”

represents the point number. The corresponding rotation matrix

from b-frame to n-frame also needs to be adjusted to

(ar),, = (o) (), (19)
where
) cos (Af;) —sin(A6;) 0
(C’g ) = | sin(Af;) cos(Af;) 0 (20)
! 0 0 1

The magnetic field map is composed of evenly distributed
reference points and MFF at each point (RP), due to the coor-
dinates of a candidate trajectory not coinciding with the RPs. A
bilinear interpolation method is used to obtain a reference MFF
with higher resolution. As Fig. 4 shows, given the coordinates
of an observation point (n,e), the corresponding reference
MFF can be approximated using the coordinates of the four
closest RPs. A linear interpolation along the north and east

M, (n.e,) @ ® M.(ne)
Mi(ne) |
M;o(n,.6,) @ @ M;,(n,.e)
Fig. 4. The reference MFF from bilinear interpolation at position of
(n,e).
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then yields [24] - = " é
M™ ~ ar My + aoMiy + asMP'y + My (21) B A
0,1 0,0 1,1 1,0 i T
= (n1—n)(e—eo) o — (n1—n)(e1—e) p— B
1 (nlfnogéelfeoy 2 (n17n03561760) (22) L.
rn — (n—np)(e—ep) o — (n—np)(e1—e)
3 (n1—no)(e1—ep)’ 4 (n1—mno)(e1—eo)

Then, the reference MFF corresponding to the ¢-th candidate
trajectory can be expressed as:

T
)" ] e

and the reference MFF in the b-frame can be expressed as:

M;* = [ (Mffl)T

b 7 T ! T T
Mp = { (cr), (cw) ] (24)
i, i,
Therefore, the i-th reference MFP is:
(o) oMb
) i1 ,
rMFP; = (25)

n n’ b
Tik (Cb )ik Mi,k

C. Determination of User’s Current Location

As described above, the differential MFP in the b-frame
can eliminate the magnetometer bias. However, the noise of
the magnetometer is relatively intense, and the selection of the
reference value for constructing the differential MFP affects
its accuracy. This solution performs de-averaging processing
on the observed MFP and the reference MFP, respectively.

Subsequently, the DTW algorithm is used to calculate the
similarities between the observed MFP and the reference MFP
to determine which candidate reference MFP corresponds
to the trajectory of the user’s most likely motion. DTW
compresses or stretches the reference axis of the two sequences
to be matched so that two sequences with different lengths
have better matching results [13]. This will help solve the
problem of inaccurate estimation of pedestrian step length by
the PDR algorithm.

In addition, the results of MFM are used to correct the
estimated position of INS-based PDR, which helps improve
the estimation accuracy of the relative trajectory (e.g., the
scale of step length), and provides a more accurate location
search area for the magnetic matching method. The position
observation equation in the n-frame is given by:

where 775 ¢ represents the estimated position by INS mech-
anization, 7}, ,, represents the output of magnetic matching
method, and n, represents the white noise of the position
measurement.

VI. TESTS AND RESULTS

Field tests are conducted in a real indoor office environment
with dimensions of approximately 94 m X 22 m, and the
indoor building structure is shown in Fig. 5. Four phones (i.e.,
HUAWEI Mate 20, SAMSUNG S6, Xiaomi 8, and Google
Pixel 2) are used for collecting data.

NI
..ﬂ(}_‘ °

oo™

Google pixel 2

Foot-mounted
MEMS-IMU

Fig. 6. The structure of P-POS.

We use the P-POS to determine position and attitude of the
smartphone to generate the magnetic field map and evaluate
the positioning performance of the proposed MFM method.
The P-POS consists of a foot-mounted MEMS-IMU and a
handheld smartphone, as shown in Fig. 6. Bluetooth commu-
nication technology is used to synchronize the system time
between the foot-mounted MEMS-IMU and the smartphone.
The detailed algorithm and the performance parameters of the
foot-mounted MEMS-IMU can be found in [25].

A smartphone (Google Pixel2) is used to collect the mag-
netic field signals to generate the magnetic field map. An
ellipsoid fitting method [26] is employed to calibrate and
subtract the magnetometer bias to accurately obtain the indoor
magnetic field signals. The magnetic field map consists of
uniformly distributed grids, and the grid size is 0.3 m. The
magnetic field map of the test area in different directions (i.e.,
north, east, and vertical) are shown in Fig. 7. The unit is
milligauss, denoted as mG.

A total of eight tests are employed for evaluating the
positioning performance of the propose MFM algorithm: tests
1 and 2 for HUAWEI Mate 20, tests 3 and 4 for SAMSUNG
S6, tests 5 and 6 for Xiaomi 8, and tests 7 and 8 for Google
Pixel 2. Due to each test being performed individually, the
trajectories of any two tests are slightly different. During the
data collection process, the misalignment angle between the
tester’s walking direction and the smartphone heading should
be small. In addition, because the magnetic field feature does
not have the ability to uniquely distinguish global position,
the initial position is usually given by other methods (such as
WiFi or Bluetooth). The initial position is manually given here,
the position error is less than 10 m, and the initial heading is
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Fig. 7. The magnetic field map of the test area. The upper, middle, and
lower graph represent the magnetic field map in the north, east, and
vertical direction, respectively.

given by the magnetic field matching algorithm.

A. Positioning Performance Analysis

The positioning performance analysis of three algorithm
configurations are used for verifying the feasibility and effec-
tiveness of the proposed MFM method. The three algorithm
configurations include: a) the PDR method described in section
IV. b) The MFM based on the relative trajectory generated by
the PDR. c) On the basis of MFM, the positioning result of
MFM is used to control the cumulative error of PDR, referred
to as MFM/PDR.

The test trajectories are composed of straight lines and
irregular curves to illustrate that the proposed MFM method
adapts to the scene of the user’s arbitrary walking track.
Fig. 8 shows the trajectories of the reference, PDR, MFM
and MFM/PDR of eight tests where the red, blue, green
and yellow lines represent the reference, PDR, MFM and
MFM/PDR trajectory, respectively. The trajectories of PDR
exhibit different direction and distance errors due to sensor
errors (i.e., the bias of gyroscope) and step-length estimation
model errors. The trajectories of MFM and MFM/PDR have
a high degree of overlap with the reference trajectory for their
stable positioning performance.

Fig. 9 shows the cumulative distribution function (CDF) of
PDR, MFM, and MFM/PDR of eight tests. The root mean
square (RMS), 68%, and 95% of the position error of the
above method are summarized in Table I. The average value
of position error are 7.45, 7.97, and 10.85 m for PDR, 1.32,
1.35, and 2.06 m for MFM, and 0.77, 0.77, and 1.42 m for
MFEM/PDR. Although the relative trajectory generated by PDR
have obvious errors in the heading and scale, they can still
effectively assist in the implementation of the magnetic field
matching positioning algorithm in the b-frame. This mainly
because these errors can be tolerated due to the slight changes
in magnetic field feature in most indoor areas. At the moment,
we find that the position error of MFM/PDR is 0.55 m smaller
than that of MFM, and a 41.6% improvement in positioning
performance is obtained. Because the output of MFM is used

to control the position error of PDR in the MFM/PDR method,
the error of sensor and the step length estimation model can be
accurately estimated, and the accuracy of the relative trajectory
can be continuously improved.

TABLE |
RMS, 68%, AND 95% OF THE POSITION ERRORS OF PDR, MFM AND
MFM/PDR
PDR (m) MEM (m) MFEM/PDR (m)
Test "RMS  68% 95% RMS 68% 95% RMS 68% 95%
1 984 1057 1443 135 140 2.1 084 082 143
2 671 742 866 153 141 217 076 073 132
3 813 863 1222 119 123 183 071 068 136
4 724 746 1126 109 1.14 164 066 072 1.12
5 617 658 960 150 1.67 233 085 080 1.62
6 673 647 1103 142 137 239 084 089 1.59
7 662 749 914 110 117 165 068 073 122
8 817 9.16 1049 136 138 236 087 078 1.72
Mean 745 797 1085 132 135 206 077 077 142

B. Comparison of the different DMFFs

We analyze the positioning performance of the different
DMFFs in the n-frame. The DMFFs include: 1) vertical
component (N1) [18], 2) horizontal and vertical components
(N2) [10], and 3) north, east, and vertical components (N3).
Additionally, the calibrated MFFs in the n-frame are provided
as a comparison, denoted as NO.

Fig. 10 shows the CDF of NO, N1, N2 and N3. The RMS,
68%, and 95% of the position error of the different MFF
sequences are summarized in Table II. The average value of
position errors are 0.86, 0.83, and 1.58 m for NO; 1.77, 1.47,
and 3.65 m for N1; 2.59, 2.18, and 5.34 m for N2,and 3.20,
2.65, and 6.43 m for N3. Because the turning movements
and slight fluctuations in attitude are inevitable for almost
all users, there are obvious differences in MFM positioning
performance when using N1, N2, and N3. The assumption
that the attitude of the smartphone remains unchanged or
fluctuates slightly cannot be meet because the tester holds the
smartphone to collect sensor data. This causes the fluctuation
of the horizontal angle (including the roll and pitch) to be small
(by a few degrees) compared to the change of the heading
angle. The positioning performance of N2 and N3 is noticeably
worse than that of N1. In addition, the positioning error of test
7-8 is several times larger than that of test 1-6, as even with
small fluctuations in the attitude of the smartphone, a large
residual magnetometer bias still causes obvious damage.

The proposed method can achieve positioning performance
equivalent to or better than calibrated MFFs of 0.83 m
(RMS)due to the working current producing a weak elec-
tromagnetic effect in the positioning phase, which causes a
change in the magnetometer bias. Compared with the cali-
brated MFFs, the differential MFP in the b-frame can greatly
reduce the influence of these errors.

VII. DISCUSSION

As described in section VI, the positioning error of the
proposed method fluctuates from 0.66 to 0.87 m in the 8
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Fig. 8. Trajectories of the reference, PDR, MFM, and MFM/PDR of eight tests. (a)-(h) corresponds to test 1-8. And the red, blue, green and yellow
lines represent the reference, PDR, MFM and MFM/PDR trajectory, respectively.

TABLE Il
THE RMS, 68%, AND 95% OF THE POSITION ERRORS OF FOUR DMFFs
NO (m) NI (m) N2 (m) N3 (m)

Test RMS 68% 95% RMS 68% 95% RMS 68% 95% RMS 68% 95%
1 1.01 098 1.85 1.28 1.27 222 1.08 1.05  2.06 1.10 1.10  2.06
2 1.00 088 1.86 0.99 .02 1.85 1.03 099 2.07 1.11 1.09  1.90
3 079 0.80 137 1.15 .13 225 246 1.53 541 191 129 484
4 072 070 1.23 1.11 1or 177 279 1.69 6.11 3.00 1.63  7.05
5 087 0.86 1.55 1.10 1.03 219 293 179 645 389 284 823
6 094 097 1.63 1.25 1.17 214 243 1.73 515 437 261 9.03
7 0.71 0.70 143 3.51 2.18 875 3.87 4.11 757 5.06 489 9.71
8 087 075 175 377 295 8.01 412 454 789 521 572  8.60

Mean 0.86 0.83 1.58 .77 1.47 365 259 218 534 320 265 643
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Fig. 9. The CDF of PDR, MFM, and MFM/PDR of eight tests. (a) PDR,

() MEM. () MEM/PDR Fig. 10. The CDF of N0, N1, N2 and N3. (a) N0, (b) N1, (c) N2, (d) N3.
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tests based on 4 smartphones, achieving an average position
error of 0.77 m (RMS). In the absence of magnetometer
bias calibration, the position performance of the differential
magnetic field profile can reach or even outperform the
calibrated MFFs. Thus, the proposed MFM algorithm has
stable positioning performance and is not affected by the
magnetometer bias, and there is no significant difference in
positioning performance for different smartphone hardware.
The reasons can be summarized as follows: 1) the accuracy
of the relative trajectory and attitude of the differential MFP
are sufficient to cancel the magnetometer bias. Thus, only
the stability of MFFs over a short period (e.g., 15 s) will
have a significant impact on the positioning performance. The
electromagnetic phenomenon formed by the current change of
the device will only cause short-term impact. 2) The strong
correlation information between the three-dimensional MFFs
and the geographic spatial coordinates is established, which
has better position discrimination. 3) The precise predicted
position can be used to control the search area of the MFM,
thereby greatly reducing the probability of a mismatch.

However, the positioning performance of the MFM/PDR
method is very dependent on the relative integrity of the
PDR. The problem of frequent and unpredictable change in
the misalignment angle between the orientation of the mobile
phone and the walking direction of the user will continue to
seriously damage the stability of the MFM/PDR.

VIII. CONCLUSION

In this study, we present a magnetic field matching method
insensitive to magnetometer bias based on PDR for smart-
phones positioning in an indoor environment. An INS-based
PDR is designed to generate the relative trajectory and the
attitude of a smartphone for MFM. The relative trajectory is
used to correlate the MFF time sequence for improving the
distinguishability and constraining the search region of MFM
by predicting position. The attitude is used for projecting
the reference MFP from n-frame to b-frame, to perform the
MFM in the b-frame and eliminating the influence of the
magnetometer bias.

To evaluate the positioning performance of the proposed
method, we conduct eight experiments using four smartphones
in the same building. Although the proposed MFM algorithm
does not perform bias compensation for the magnetometer
observations, it can still obtain a stable positioning result and
achieve a positioning performance equivalent to that of the
calibrated magnetometer observation. The test results show
that the positioning error is distributed between 0.66 and 0.87
m, reaching an average positioning performance of 0.77 m
(RMS). The experimental results completely verify that the
MFM method designed in this study is less affected by the
magnetometer bias, and there is no significant difference in
positioning performance between different smartphones.

In our future work, we will test the positioning performance
of the proposed method in multiple typical smartphone poses,
i.e., handheld, calling, swinging in hand, and in pant pockets
for adaptation to the user’s behavior. In addition, we will
attempt to perform a global traversal search in the magnetic

field map so that the position and direction can be initialized
using only the MFM method, which will be helpful for
providing positioning service for users in regions with only
magnetic field signals.
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