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Improving the Navigation Performance of the
MEMS IMU Array by Precise Calibration

Liqiang Wang , Hailiang Tang, Tisheng Zhang, Qijin Chen , Jinwei Shi , and Xiaoji Niu

Abstract—Usinga microelectromechanicalsystem (MEMS)
inertial measurement unit (IMU) array composed of multiple
low-cost IMUs can reduce the measurement errors of inertial
sensors, and improve its navigation performance. However,
there is doubt about the benefit of the IMU array in the scene of
GNSS/INS dynamic navigation.Therefore, to evaluate the nav-
igation performance of the arrays, we developed four groups
of IMU arrays, each containing 16 MEMS IMUs. Each IMU
was accurately calibrated and compensated to improve the
performance.The field experimentsproved that the navigation
accuracy of the IMU array improved by 3.4 times statistically
over a single IMU, which is close to the theoretical limit,
i.e., 4 times. Comparison data processing indicated that the
individual IMU calibration reduced the horizontal position
error of the array by 54% on average, which confirms that
the precise calibration of each IMU, especially the cross-axis
effect and mounting angles, is crucial to the array’s naviga-
tion performance. This research provides firm experimental
support for the application of IMU arrays in the field of navigation.

Index Terms— MEMS IMU, sensor array, IMU calibration, GNSS/INS.

I. INTRODUCTION

INERTIAL sensors, which are used to measure acceleration
and angular velocity, have been studied since the discovery

of the gyroscopic effect by Foucault in 1852 [1]. Since the
1950s, inertial sensors have been used in inertial navigation
systems (INS). Until a few decades ago, they were limited
to military and aerospace applications because of their bulk-
iness and high production costs. These drawbacks affected
navigation-grade high-precision inertial devices such as the
laser gyroscope. To overcome these challenges, microelectro-
mechanical system (MEMS) inertial measurement unit (IMU)
have been developed, which are advantageous in terms of their
compactness and low cost [2], [3]. Thus IMUs are used in
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civilian applications [4]. Currently, consumer-grade MEMS
IMUs are widely used in the industry and civilian life, owing
to their affordability and chip-level volume [5].

However, owing to their drawbacks concerning design
principles and production processes, MEMS IMUs inevitably
have larger measurement errors than laser-gyroscope-based
IMUs; these errors lead to a large cumulative error when they
are implemented in an INS. According to the random error
theory, fusing multiple IMUs could yield more accurate and
reliable inertial measurements [6]. Therefore, MEMS IMU
arrays would significantly improve the inertial measurement
accuracy, while remaining affordable. Consumer-grade MEMS
IMUs (usually less than 1 US$ per unit) can meet the low-
cost and high-performance requirements of an IMU array. N
inertial sensors with independent measurement errors expect
that the uncertainty of measurement can be reduced by

√
N

times after data fusion [7]. The IMU array’s noise performance
and potential for improving its navigation performance have
drawn significant research interest.

A. Related Works
Recently, researchers have designed IMU arrays and evalu-

ated the arrays’ noise performance. For example, an IMU array
comprising 16 MEMS IMUs was designed in [8], and the noise
performance of the accelerometer and gyroscope containing in
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the array was tested. The static noise root-mean-square (RMS)
values of the accelerometer and gyroscope were reduced by
3.2 and 3.8 times, respectively. Nevertheless, the improvement
effect of bias instability was slightly worse, which reduced by
2.8 and 3.0 times, respectively. The IMU array designed in [9]
also contained 16 MEMS IMUs. The array was calibrated and
compensated, and the data were fused using the mean filtering
method. The gyroscope and accelerometer’s bias instability
errors were reduced by 4.02 and 3.51 times, respectively,
and the angular/velocity random walk error was reduced by
3.89 and 3.67 times, respectively. As the IMU array was
reinstalled once during the calibration process, the accelerome-
ter’s error improvement effect was a little worse. Additionally,
the studies [10]–[13] designed IMU arrays that included 18, 5,
and 32 IMUs, and the static noise performance of the arrays
improved notably after data fusion.

In these studies, [9], [10], conducted the dynamic navigation
experiment, but they did not achieve the expected performance
improvement. Other studies on this topic were limited to
investigating the static noise performance of the IMU array,
while excluding dynamic errors (such as scale factor, cross-
axis coupling, and the nonlinear errors).

Guerrier [14] designed a simulation model to validate the
IMU array’s navigation performance, and evaluated the perfor-
mance enhancement after fusing 1–10 IMU data. The simula-
tion results showed fusing the measurements of 10 IMUs could
reduce the position error by approximately 40%, or increase
the navigation performance by 2.5 times. Clausen et al. [15]
assessed the navigation performance after fusing four IMU
measurements through a vehicle field test. Their results
showed that the IMU array’s navigation error was smaller
than that of a single IMU. However, they did not quantita-
tively evaluate the improvement in the navigation performance.
Bancroft [16] calculated the dead reckoning of multiple inde-
pendent IMU measurements, and added them to the Kalman
estimator to obtain the positioning results. The fusing of 2, 3,
4, and 5 IMUs’ measurements resulted in the error reductions
of 25%, 29%, 32%, and 34%, respectively, and the navigation
performance was enhanced by 1.30, 1.43, 1.47, and 1.51 times.

In [14], after fusing 10 IMUs, the navigation performance
reached 79% of the theoretically predicted value. However,
the simulation results can only be used as a reference because
the dynamic sensor errors in the actual scene are ignored. The
IMU array’s navigation performance in [15] was improved
to 67.5% of the theoretical value. However, they used an
inadequate number of IMUs, which reduced the credibility
of the results.

In the IMU array’s data fusion algorithm, [8]–[13] took
the average of the raw IMU observations as the fused mea-
surement in noise performance evaluation. However, the arti-
cles [10], [11], [18] claimed that averaging was not the best
method for dynamic data fusion, owing to the measurement
errors (including scale factor and nonlinear errors) in dynamic
experiments. The studies [14]–[16] did not directly perform
measurement fusion on the raw IMU observations when
evaluating the navigation performance. Instead, they fed the
raw IMU observations or calculated motion information into
the Kalman estimator, to solve the navigation information

along with the global navigation satellite system (GNSS)
positioning result. Skog et al. [19] proposed a method based
on maximum likelihood estimation for IMU array data fusion,
and Schwaab et al. [20] employed the optimal linear unbiased
estimation for the IMU array’s measurement fusion. Although
the methods worked in IMU array’s data fusion, the dynamic
experiments based on them did not yield the expected results.
Martin et al. [17] designed three approaches that enhanced
the measurement accuracy of IMU arrays. Although some
sensors could benefit from the methods, they did not evaluate
the improvement in terms of the IMU array’s navigation
performance.

The literature survey shows that the noise performance
of an IMU array, which is composed of N IMUs, can be
improved by a factor of approximately

√
N times, which is a

theoretical value compared to a single IMU. However, the IMU
arrays underperform in terms of dynamic navigation despite
the available data fusion methods. Moreover, there has been a
lack of dynamic navigation tests.

B. Presented Work
We reason that the calibration and compensation to each

individual IMU chip in an array, which was ignored in most
cases in previous research, is of great importance and will sig-
nificantly impact its dynamic navigation performance. System-
atic errors such as scale factor and cross-axis coupling errors,
introduce differences in each IMU’s measurement result. The
IMU chip’s mounting angles on the array also disorients
the three sensitive axes of each unit. These errors do not
show up under stationary condition. However, under dynamic
conditions (such as in a moving vehicle), the real values sensed
by different IMU chips will be slightly deviated, which will
cause the collected motion information to blur when the IMU
array data are fused; consequently the measurement accuracy
of the IMU array will reduce below the expected level. Hence,
although the static noise performance of IMU arrays has
significantly improved, the dynamic navigation performance
rarely reach the desired improvement effect.

Based on these considerations, we designed an IMU array,
and precisely calibrated the systematic error and mounting
angles of each unit. Then, we compensated the raw IMU
raw observation for the calibration parameters and size-effect.
Finally, we fused the IMU array’s measurements and evaluated
its dynamic navigation performance. Moreover, to make the
evaluation results representative and statistically significant,
we fabricated four IMU arrays to obtain multisample test data.
The calibration and dynamic experiment data used in this study
were open-sourced which can be obtained on the website:
https://github.com/i2Nav-WHU/IMU-Array.git.

II. METHODOLOGY

We designed an IMU array, containing 16 MEMS IMU
chips, a core processor, and data acquisition firmware. A spe-
cial data reading method was employed to synchronously sam-
ple each IMU data. Then, the systematic errors and mounting
angles of each IMU were calibrated and compensated with
a high-precision turntable. Furthermore, the measurement of
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Fig. 1. Photograph of the designed IMU arrays.

each IMU was converted into the geometric center of the IMU
array. The mounting angles and size-effect compensation of
each individual IMU chip synchronized IMU’s measurement
spatially. Finally, data fusion was performed on every IMU’s
measurement, and the IMU array’s noise performance was
analyzed.

A. IMU Array Design
The number of the IMUs in the array is an important

design consideration. An inadequate number of IMUs yields
uncertain navigation performance because individual IMUs
perform differently. Conversely, too many IMUs consume too
much current from power supply, which cause the power
ground unstable and generate additional measurement noise.
Moreover, it would be difficult to simultaneously collect the
IMU measurements if the array’s scale were large. Accord-
ingly, we selected 16 IMUs to construct the IMU array,
to balance the accuracy of the performance evaluation and
the data acquisition burden. This also ensured that minimal
additional measurement noise resulted from the circuit power
consumption disturbance.

A PYNQ-Z2 processor and 16 consumer-grade MEMS
IMUs, ICM20602, were used in the IMU array. The low-noise
power supply, isolation chip, and capacitor filter circuit were
used in the array, to reduce the electrical noise and crosstalk
among the chips. To more accurately test the improvement
in the IMU array’s navigation performance, we designed four
groups of IMU arrays (Group 1–4) and soldered them to a
single printed circuit board (PCB). A photograph of the IMU
arrays is shown in Fig. 1.

A serial peripheral interface bus, including 16 parallel
master-in slave-out ports [10], was used for data acquisition
between the IMU array and PYNQ-Z2 processor, which syn-
chronized the sampling time and data transmission of the
16 IMUs. The sampling rate of the IMU was set to 200 Hz
(averaged from 1 KHz), which is sufficiently high for vehicle
dynamics.

B. IMU Array Calibration
The IMU observation constitutes kinds of errors, each of

which includes a constant part, random slow-changing part,

Fig. 2. IMU array’s coordinate system.

and high-frequency noise part. The constant part, which is also
called the systematic error, can be calibrated and compensated.
The random slow-changing and the high-frequency noise parts
are known as random errors. Each IMU in the array has
different mounting angles, yielding varying measurements.
It is expected that the measurement obtained by each IMU
deviates only because of random errors when the measurement
values are combined. Therefore, only the systematic error and
mounting angles of each IMU were compensated well, more
accurate inertial measurement values can be obtained after the
data fusion.

When calibrating the IMUs, we marked the coordinate
systems of each IMU as the bi frame, where i = 1, 2, . . . 16.
The origin of the frame is the geometric center of each IMU
chip. The IMU array coordinate system was marked as the
b frame—the origin of which is the IMU array’s geometric
center. The schematic of the coordinate system is illustrated
in Fig. 2.

1) IMU Array Calibration Model: By considering the system-
atic errors in the raw IMU observation, we established the
measurement model of the gyroscope in the i -th IMU can
follows [21], [22].

ω̃bi = (I + Sgi + Ngi )ω
bi + bgi + vgi , (1)

where ωbi is the true angular velocity of the gyroscope
in the i -th IMU; ω̃bi is the angular velocity measured by
the gyroscope; vgi represents the measurement noise; and
Sgi , Ngi , and bgi are the systematic errors, representing the
gyroscope’s scale factor error, cross-coupling error, and the
constant zero offsets, respectively.

During the calibration, the PCB of the IMU array was
mounted on and aligned with a precision turntable, such that
only the angular velocity in the b frame could be accurately
known, whereas the actual input in the bi frame could not
be determined. Therefore, the mounting angles—the angles
between the three axes of the bi and b frames, must be con-
sidered during the calibration. Thus, the model was expressed
as

ω̃bi = (I + Sgi + Ngi )Cbi
b ωb + bgi + vgi , (2)

where ωb is the true angular velocity of the IMU array, and
Cbi

b is the rotation matrix between the b and bi frames.
Similarly, the i -th accelerometer’s measurement model was

constructed as

f̃
bi = (I + Sai + Nai )Cbi

b f b + bai + vai , (3)
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Fig. 3. IMU array calibration on the turntable.

where f b is the input specific force of the IMU array; f̃
bi

represents the specific force measured by the accelerometer;
vai is the measurement noise; and Sai , Nai , and bai are the
scale factor error, cross-axis coupling error, and constant zero
offsets, respectively.

Let K gi = (I + Sgi + Ngi )Cbi
b and K ai = (I + Sai +

Nai )Cbi
b , then we can calibrate the gyroscope and accelerom-

eter through the angle position method and the six-position
method, respectively [23], [24].

2) IMU Array Calibration Process: The high-precision
turntable shown in Fig. 3 was used to calibrate each IMU
in the array. First, the array was aligned along the rotational
axes of the turntable and mounted on it. Then the gyroscope
and accelerometer were calibrated.

When calibrated the gyroscope, we rotated the turntable
so that the three axes of the array were vertically upward
in turn. Each axis rotated clockwise and counterclockwise
for four full circles, i.e., 1,440◦. At the beginning and end,
the table was accelerated and decelerated with an angular
acceleration of 5 deg/s2, and rotated during the middle time
at a constant 30 deg/s, which is a typical angular velocity in
vehicle movement.

During the gyroscope’s calibration, the earth’s rotational
angular velocity has a stable component along the rotational
axis, and a time-varying sinusoidal component along the two
horizontal axes. We considered the entire rotation process to be
uniform. Thus, the angles of rotation along the two horizontal
axes equal zero after integration. The angle measured by
the vertical axis within t s can be obtained through integral
calculation, which can be expressed as

α = αtable + ωesin(φ)t, (4)

where αtable = 1,440◦ is the rotation angle of the turntable, ωe

is the earth’s rate of rotation and φ donates the local latitude.
By integrating the angular velocity from the gyroscope as

the observation vector, we solved the parameter matrix and
stable bias error using the least square method [25].

While calibrating the accelerometer, we rotated the table
so that each axis of the IMU array was vertically upward
and downward, respectively. Static data were collected at each
position for 2 min, which reduced the influence of measure-

ment noise on the calibration results and fluctuations in the
observations caused by the bias instability. By considering the
local gravity as the real input specific force of the accelerome-
ter and the average of the accelerometer’s measurement as the
observation vector, we solved the unknown parameter using
the least square method [25].

C. IMU Array Measurement Fusion
1) Size-Effect Compensation: The mounting angles of each

IMU on the array were considered in the calibration process.
Before fusing the IMU array’s data, it is necessary to convert
the inertial measurements into the same spatial position, i.e., to
compensate for the size effect of each IMU. The size-effect
compensation converts the measurement of the IMU from the
bi to b frame.

The IMU array is a rigid body, thus, all positions on the
PCB have the same angular velocity. The angular velocity
after the size-effect compensation was ω̃b

i = ω̃b�
i , where ω̃b�

i

is the angular velocity after compensation for the calibration
parameter.

Basic kinematics dictate that the specific force at one point
on a rotating coordinate frame can be decomposed into that at
another point, a centrifugal term, and an Eulerian term [26].
Therefore, the specific force of the i-th IMU after the size-
effect compensation was expressed as

f̃
bi
i = f̃

b�
i − ωb

i × (ωb
i × r i ) − ω̇b

i × r i (5)

where f̃
b�

i is the specific force after compensation for the
calibration parameter; ωb

i and ω̇b
i are the angular velocity and

angular acceleration of the IMU array, respectively; and r i is
the IMU’s position in the b frame, which was accurately set
in the PCB design.

2) Measurement Fusion: The random error of an IMU
is critical to maintaining the accuracy of the GNSS/INS
integrated navigation system. The IMU array reduces the
high-frequency noise and random slow-changing error via
measurement fusion. Consequently, the navigation accuracy
of the IMU array is improved. This study fuses data of the
IMU array at the sensor level [27]. That is, the measurement
of each IMU is firstly fused to obtain the IMU array’s inertial
data. The fused measurement is then used in the GNSS/INS
integrated navigation system.

Although utilizing the mean value yields suboptimal perfor-
mance [18], it also effectively reduces the measurement noise
if all IMUs exhibit equivalent noise performance. Moreover,
this approach is less computationally taxing and easier to
implement in engineering than the least square estimator [28].
Therefore, this study considers the average of the measure-
ments for data fusion. The measurement noise of the IMU
array can be calculated as follows [7], [8].

vA = 1

N

N∑

i=1

vai σ 2
a = E[(vai )

2], (6)

σ 2
A = E[( 1

N

N∑

i=1

vai )
2] = 1

N2 E[
N∑

i=1

(vai )
2] = 1

N
σ 2

ai , (7)



26054 IEEE SENSORS JOURNAL, VOL. 21, NO. 22, NOVEMBER 15, 2021

TABLE I
NOISE PERFORMANCE IMPROVEMENT OF IMU ARRAYS

Fig. 4. Accelerometers’ allan variance plot of IMU array (group 3 as
example).

where vai is the zero-mean noise of a single IMU, σ 2
a is the

noise variance, vA is the measurement noise of the IMU array,
and σ 2

A its noise variance.
Notably, the standard deviation of the IMU array measure-

ment noise will be theoretically reduced by
√

N times than
that of a single IMU. That is, under ideal circumstances,
the performance of the IMU array can be increased by

√
N

times.
3) IMU Array’s Noise Performance: Angle (velocity) random

walk (ARW or VRW) and in-run bias instability in random
error are crucial indicators of the noise performance of an IMU
array. Allan variance—a common method for analyzing and
quantifying the random error of inertial sensors currently—
is used to quantitatively evaluate the ARW/VRW and bias
instability of the IMU array. The random error term in the
inertial sensor’s static data can be clearly expressed in the
Allan variance plot, and the error coefficient can be obtained
through a simple calculation [29].

To evaluate their static performance, 8 h of static data
were collected from the 4 IMU arrays on the stable turntable
at a relatively stable temperature. The Allan variance plots
of the accelerometers of the third IMU array are illustrated
in Fig. 4. Each dash-dotted line in the figure is the Allan
variance plot of the individual IMU, whereas the thick solid
lines denote the array’s Allan plots. The Allan curve of the
IMU array gyroscope yields a similar trend. Then, the random
error coefficient was calculated, and the average of 16 IMU
coefficients was considered as the error coefficient of a single
IMU. The improvement in the IMU array’s noise performance
was gauged by comparing the random error coefficient of a

single IMU with that of the array. The average improvement
ratio of the ARW and the bias instability of the gyroscope
is considered as the performance improvement of the IMU
array’s gyroscope. The accelerometer’s performance is defined
similarly. The improvement ratios of the four IMU arrays’
noise performance are listed in Table I.

The noise performance of the four arrays demonstrated sig-
nificant improvement over that of a single IMU. The average
improvement ratios of the gyroscope and accelerometer were
3.67 and 3.72 times, respectively. That is, the IMU array’s
noise performance increased by 3.70 times on average, which
is close to the theoretical factor of 4. It also proved that the
noise performance of the designed four IMU arrays improved
nearly ideally.

III. EXPERIMENTS AND DISCUSSION

To accurately evaluate the improvement in the IMU array’s
dynamic navigation performance, we performed field exper-
iments on the four groups of IMU arrays. The navigation
performance and impact of calibration and compensation on
the four groups will be discussed in this section.

A. Experiment Description
The experiment was carried out on a terrestrial vehicle.

Fig. 5 shows a photograph of the vehicle and experimental
setups. In this test, the IMU array, an integrated naviga-
tion module, INS-Probe, and a navigation-grade GNSS/INS
Leador-A15 were used. The INS-Probe was used to syn-
chronize the data of each IMU with the GNSS time. The
positioning result of Leador-A15 served as the ground truth.
To acquire a high-precision GNSS positioning result, the raw
GNSS observations of the rover (test vehicle) and nearby base
station were preserved and used for post-processed kinematic
(PPK).

Fig. 6 illustrates the driving track of the vehicle in a
full open-sky condition. The open experimental area ensured
the acquisition of centimeter-level GNSS positioning, which
provided more accurate reference trajectories and reduced the
influence of the GNSS positioning error on the performance
evaluation of the IMU array. The experimental setups were
activated, and the vehicle was stationary for 400 s, such
that Leador-A15 could perform static alignment. Subsequently,
the vehicle was driven along the complex trajectory shown
in the figure, and accelerated and decelerated to expedite
the convergence of various errors in the integrated navigation
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Fig. 5. Experimental setups of the field test.

Fig. 6. Trajectory of the dynamic navigation test.

system. The four IMU arrays were tested at this location for
more than 40 min.

B. Data Processing Method
The dynamic navigation performance of the IMU arrays was

compared using the data processing diagram shown in Fig. 7.
First, centimeter-level GNSS positioning results were

obtained by performing PPK operations on the GNSS raw
observations of the rover and base station. The millimeter-level
positioning result of Leador-A15, which served as the refer-
ence trajectory, was acquired using the Rauch-Tung-Striebel
smoother.

Then the positioning result of each IMU and the array
were calculated using the extended Kalman filter (EKF). The
error parameters in the EKF of a single IMU chip and the
IMU array were optimized separately. GNSS outage, which
were introduced to evaluate the navigation performance
of the IMU array, occurred after the vehicle moved for
400 s. The outage length and interval were 30 and 90 s,
respectively. The gyroscope measurements when the vehicle
was stationary were performed as the initial bias error in the
EKF, such that the state errors converged expeditiously.

Next, the positioning errors of a single IMU and the array
were acquired by comparing their positioning results with the

reference trajectory. Then, we calculated the RMS value of
the maximum position error during all periods of outage, and
recorded it as the positioning error of the array. The same
method was used for each IMU’s positioning error, and the
RMS value of the positioning errors of all 16 IMUs was
considered as the positioning error of a single IMU.

To more accurately evaluate the positioning error of the
IMU array, we postponed all periods of the GNSS outage
by 30 and 60s. Thus, the GNSS outage time covered the
entire test period, retrieving more navigation error samples.
The computation was repeated to acquire the positioning
error.

Finally, the improvement in the navigation performance of
the IMU array was gauged by comparing the positioning errors
of the IMU array and a single IMU.

It is worth mentioning that the InvenSense’s MEMS IMU,
ICM20602, produced low-frequency noise in the z-axis mea-
surement of the accelerometer in a static state; i.e., the z-axis
Allan curve bulges before fully reaching the bottom (Fig. 4).
Another MEMS IMU from InvenSense, MPU6000, was used
in a previous study to evaluate the noise performance of
an IMU array [9]. The same phenomenon also appears on
the accelerometer’s Allan curve. The common low-frequency
noise in the accelerometer’s z-axis severely affects the per-
formance along the IMU array’s z-axis. Therefore, when
evaluating the IMU array’s navigation performance, we judged
the navigation accuracy based on the horizontal position error,
without considering the altitude error.

C. Navigation Performance Improvement
The four IMU arrays’ positioning errors were calculated

using the processing method. The error drift curve of the first
IMU array is illustrated in Fig. 8. In this graph, the positioning
error was calculated from 29 GNSS outage test samples.
That is, approximately 90 GNSS outage samples were used
to evaluate the navigation performance of each IMU and
the array. This raised the accuracy and credibility of the
improvement evaluation. The horizontal position errors of the
four IMU arrays and a single IMU at different outage start
times are shown in Table II.
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Fig. 7. Field test data processing and analysis block diagram.

TABLE II
HORIZONTAL POSITION ERROR OF THE FOUR IMU ARRAYS IN THREE GNSS OUTAGE TESTS

According to Table II, the horizontal position errors of the
four IMU arrays significantly reduced for the three different
outage tests compared to that of a single IMU. However, the
improvement effect of the IMU array’s position error varied
by group in the outage tests. Specifically, the position error
of Group2 reduced 4.39 times in the first outage test, and
2.76 times in the second test. This difference is related to the
random test situation, including the GNSS positioning error
and vehicle’s dynamics. It also reflects the significance of
increasing the number of outage test samples, as it distributes
the GNSS outage period throughout the entire test process
and helps more accurately reflect the IMU’s navigation per-
formance in terms of the position error.

The RMS value of the horizontal position error in the
three different outage tests was calculated. The ratio of the
RMS of a single IMU’s horizontal position error to that of
the IMU array was considered as the improvement effect

in the array’s navigation performance. However, the degree
of improvement was different for the four IMU arrays. The
extent of improvements in Group 1–3 were similar, i.e.,
approximately 3.4 times, whereas that in Group 4 reduced by
3.19 times. This was attributed to the individual differences
in the navigation performance of the IMUs and vehicle’s
dynamics.

Despite the influence of the test conditions and individual
differences, the average position error of the four IMU arrays
reduced 3.38 times over a single IMU, which is close to
the theoretical factor of 4. Considering that the measurement
errors of the IMUs were not entirely independent of one
another, it can be determined that after precise calibration
and compensation, the four IMU arrays achieved the desired
performance improvement. These results led us to conclude
that the dynamic navigation performance of an IMU array
comprising 16 MEMS IMU chips improves by nearly 4 times.



WANG et al.: IMPROVING NAVIGATION PERFORMANCE OF MEMS IMU ARRAY BY PRECISE CALIBRATION 26057

Fig. 8. Position error of IMU array (group 1 as example).

TABLE III
HORIZONTAL POSITION ERROR OF THE IMU ARRAY BEFORE

CALIBRATION AND COMPENSATION

D. Impact of Calibration and Compensation
The calibration and compensation of each individual IMU

in the array played an essential role in improving its dynamic
navigation performance. However, no published results on the
effect of calibration and compensation on the IMU array’s
performance improvement exist. Therefore, to confirm the
observation, we tested the array’s navigation performance
before and after the calibration and compensation. We fused
data on the measurement values of each IMU that were
not compensated for the calibration parameters, and applied
data processing method (from Section III.B) to calculate the
navigation position error. The horizontal position error and
error reduction ratio of the four IMU arrays before calibration
and compensation are listed in Table III.

In Table III, the array’s position error before the compensa-
tion improved by only 1.56 times on average, which is far from
the desired effect. The horizontal position error of a single
IMU in Table III before and after the calibration and com-
pensation are almost the same as those in Table II, whereas
the IMU arrays’ position errors are significantly different.
This confirms that compensating the systematic errors and
mounting angles effectively suppressed the motion information
blur in the IMU array’s data fusion.

The position errors of the four IMU arrays after the cali-
bration and compensation reduced by 61 %, 36 %, 56 %, and
64 %. The degree of reduction varies with the array because
each IMU had a different systematic error and mounting
angles. Furthermore, the difference between the test dynamics
of the four arrays caused arbitrary error reductions after the
compensation. Nonetheless, the four groups of test results
showed a significant reduction in the position error of the
IMU array after the calibration and compensation, with an

average reduction of 54 %. We conclude that the calibration
and compensation of each individual IMU effectively improves
the measurement accuracy of the IMU array.

We reproduced the same test on a low-speed wheeled robot
with a maximum speed of 1.5 m/s. However, in the robot test,
the calibration and compensation of the individual IMU did
not significantly influence the array’s navigation performance.

The test and analysis results led us to infer that when the
dynamics of the IMU array are higher, the significance of
the calibration and compensation are greater. This conclusion
could explain the problem expressed in previous studies (such
as [9], [10]) that the static performance of the IMU array
had improved significantly, while the dynamic navigation
performance had not reached the ideal effect.

In this study, the IMU array with 16 IMU chips achieved
an effect close to the theoretical value. In future studies, each
IMU must be more precisely calibrated (mostly the cross-axis
coupling error and mounting angles) if higher navigation
accuracy is expected by increasing the array size. However,
for the MEMS IMU chips, which have few stable parameters,
the precision of calibration may not be guaranteed. Therefore,
improving the navigation performance by solely increasing the
scale of the IMU array should be studied further.

IV. CONCLUSION

This study enhanced the dynamic navigation performance
of an IMU array by precise calibration and verified the
improvement of the IMU array through field tests firmly. The
results showed an improvement of 3.7 times on average in
terms of the noise performance of the arrays. The vehicle’s
dynamic navigation performance with integrated GNSS/INS
was improved by 3.4 times. Both the static sensor errors and
the dynamic navigation performances improved by a factor
close to the theoretical one, i.e., 4 times. The results also
demonstrated the importance of calibrating and compensating
each IMU in terms of the dynamic navigation performance of
the array. The dynamic navigation error was reduced by 54 %
on average after the calibration and compensation.

The self-calibration of an IMU array [30] is more afford-
able and feasible than the calibration using a high-precision
turntable. Therefore, future work shall focus on a simple, yet
effective, method to calibrate the IMU arrays in a systematic
way.
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