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Consumer-Grade Inertial Measurement Units
Enhanced Indoor Magnetic Field Matching

Positioning Scheme
Jian Kuang , Taiyu Li , Qijin Chen , Baoding Zhou , and Xiaoji Niu

Abstract— Magnetic field matching (MFM) positioning is one
of the mainstream methods of consumer indoor positioning,
which has attracted great attention from academia and industry.
However, efficient methods for constructing magnetic field maps
and matching positioning methods with high stability still need
to be developed. This study proposes an indoor MFM positioning
scheme enhanced by consumer-grade inertial measurement units
that can efficiently generate a magnetic field grid map and
achieve robust matching positioning, without the need to actively
calibrate the magnetometer bias. When generating the magnetic
field map, the proposed method employs a pedestrian positioning
and orientation system to efficiently collect data by releasing
individual behavioral constraints and reducing the number of
control points required. Moreover, a magnetometer bias auto-
calibration method, aided by the precise attitude, is proposed to
simplify the data collection process. During real-time positioning,
the position and attitude generated by pedestrian dead reckoning
(PDR) are used to generate the differential magnetic field
strength in the sensor frame; this achieves matching positioning
that is independent of the magnetometer bias. Furthermore,
an estimation method for the MFM position noise, based on
the magnetic field gradient, is proposed to improve the accuracy
of MFM/PDR integrated positioning. Several experiments were
conducted to verify the feasibility and performance of the
proposed scheme. Only slight differences were found between the
magnetic field maps using three different smartphones, showing
that the proposed scheme can efficiently generate a high-precision
magnetic map. The positioning results of multiple tests conducted
using eight different smartphones revealed that the proposed
scheme achieves continuous and robust meter-level positioning
accuracy.

Index Terms— Indoor positioning, magnetic field matching
(MFM), pedestrian dead reckoning (PDR), pedestrian navigation,
smartphone-based positioning.
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I. INTRODUCTION

LOCATION-BASED services (LBSs) have become an
indispensable part of the lives and jobs of a large number

of people. Positioning technology is one of the core tech-
nologies of LBSs [1], [2]. Compared with global navigation
satellite system (GNSS), which are used for outdoor envi-
ronments, to date, a reliable positioning solution for indoor
positioning technologies has not been developed due to the
complicated nature of indoor spatial structures. This issue has
continued to attract the attention of researchers in academia
and industry. Many positioning methods have been developed
to solve indoor positioning problems [3], such as Wi-Fi [4],
Bluetooth [5], radio frequency identification (RFID) [6], fifth-
generation mobile communication technology (5G) [7], ultra-
wideband (UWB) [8], magnetic field matching (MFM) [9],
and pedestrian dead reckoning (PDR) [10].

MFM has the advantages of ubiquity, stability, and immu-
nity to influences from the human body [9] and is one of the
mainstream indoor positioning methods for consumer users.
MFM is physically feasible because the interference from
artificial magnetic fields (such as those formed by reinforced
concrete and cables) in an indoor environment brings stronger
position distinguishability than that of the geomagnetic field.
Moreover, the movement of small ferromagnetic objects (e.g.,
tables and chairs) will only cause changes in the magnetic
field in a local area (such as a circular area with a radius of
1 m) [11] and will not have a destructive effect on MFM.
Thus, MFM has great potential to provide stable and reliable
high-precision indoor positioning services with zero hardware
cost [9].

The two main processes in MFM are: magnetic field map
generation and real-time matching positioning. When gen-
erating a magnetic field map, the correlation between the
geographic coordinates and the environmental magnetic field
strength (MFS) must be established [12], [13]. As determining
geographic coordinates is time-consuming and labor-intensive,
it is necessary to reduce the measurement accuracy of the geo-
graphic coordinates to improve the data collection efficiency.
During the real-time matching positioning stage, the current
position of the user is determined by calculating the similarity
between the observed and reference MFSs from the magnetic
field map. As a given MFS may appear in many different
geographic positions, it is difficult for the point matching
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method to obtain stable localization performance in the area
where the differences of the MFSs are not obvious. Thus,
almost all high-performance MFM algorithms essentially oper-
ate through sequence matching, similar to the gravity-aided
positioning method [14].

This study proposes an indoor MFM positioning scheme
that is aided by consumer-grade inertial measurement units
(IMUs). The proposed scheme aims to efficiently generate a
magnetic field vector grid map and achieve robust matching
positioning. Moreover, users no longer need to actively cali-
brate the magnetometer bias, which effectively improves the
applicability of the MFM solution. The major contributions of
this study are given as follows.

1) Based on the self-developed pedestrian positioning and
orientation system (P-POS), this article proposes a
scheme for generating highly efficient and reliable mag-
netic field maps. An iterative method for autocalibration
of magnetometer bias based on the attitude provided by
P-POS is also proposed. Compared with the traditional
methods, the main advantages of the proposed scheme
are that it requires a smaller number of control points,
does not strictly constrain the way the tester holds
the sensor, the walking speed, and the shape of the
walking trajectory, and can automatically calibrate the
magnetometer bias.

2) This study proposes an estimation method of the posi-
tioning error of the MFM based on the MFS gra-
dient, which can effectively improve the localization
performance of the author’s existing MFM algorithm
independent of magnetometer bias. The algorithm can
resist the damaging effects of occasional magnetic field
fluctuations or the disappearance of magnetic field gra-
dients in local areas.

The remainder of this article is organized as follows.
Section II summarizes related previous works. Section III
provides an overview of the proposed method. Section IV
details how to generate a magnetic field vector map based
on P-POS. Section V provides the detailed algorithm
for PDR trajectory-based MFM. Section VI evaluates the
proposed method and discusses the experimental results.
Finally, we conclude this article and present future work in
Section VII.

II. RELATED WORKS

A. Magnetic Field Map Data Collection

Magnetic field map construction usually involves MFS
collection and location labeling. Since consumer-grade mag-
netometers have small performance differences and high sam-
pling rates (e.g., 100 Hz) and magnetometer observations are
not affected by attitude changes, the core of the magnetic field
map construction technique is how to quickly determine the
geographic coordinates corresponding to the MFS. The point-
to-point manual labeling method [15] provides high-precision
location labeling and is suitable for all MFM algorithms, but
the work efficiency is very low and cannot be applied to
large-area positioning demand scenarios.

As an alternative, a walking survey (WS) can be applied to
balance the measurement accuracy and costs [10], [16], [17],

[18]. The basic aim of a traditional WS is to provide reliable
position estimations by imposing uniform linear motion con-
straints on the tester while using discrete control points (i.e.,
positions with known coordinates) to control the cumulative
error of the position in the data processing algorithm [19].
However, for large indoor areas, a large number of nonpro-
fessional testers need to be mobilized to complete the heavy
burden of magnetic field map data collection. Furthermore, the
measurement accuracy of the traditional WS approach cannot
overcome the issue of control points being confused for testers
walking at nonlinear trajectories and nonuniform velocities.
Compared with the traditional WS method, which needs to
actively label the location, the simultaneous localization and
mapping (SLAM)-based mapping methods realize the mag-
netic field feature and location labeling without any operation
by the user [20]. However, SLAM requires users to revisit the
same path multiple times, which severely limits the efficiency
of this method.

To further reduce costs, a magnetic field map is constructed
using trajectories generated from mass users [21], called
crowdsourcing. The method can be divided into active and
passive. The idea of active crowdsourcing is similar to that of
WS, but the data collection personnel are transformed from
trained users to ordinary users [22]. Due to the complicated
operation process, the accuracy of location annotation cannot
be guaranteed. Passive crowdsourcing realizes the location
labeling of magnetic field fingerprints by clustering the move-
ment trajectories of mass users [23], [24]. However, due to the
complexity of mass user motion trajectories and the irregular
dynamics of using smartphones, the accuracy of trajectories
obtained by clustering is very limited. Moreover, this method
is limited by the number of users, and work efficiency cannot
be guaranteed.

B. Matching Algorithm
MFM algorithms include single-point-based and sequence-

based methods. Single-point-based methods, such as particle
filtering (PF), use only a single magnetic field observation
at a time to obtain the current user’s position. The idea of
PF is to set many particles to retain the possible position
state of the user and uses the real-time observed MFS to
determine the weights of particles, continuously replicate
those particles with high weights, and finally converge to an
accurate position [25]. PF achieves very good localization
performance because the particle filter achieves an implicit
sequence matching. Nonetheless, due to the low dimension of
the magnetic field feature, PF will diverge in the region where
the magnetic field signal fluctuations are gentler. Therefore,
follow-up research focused on how to limit the PF divergence
phenomenon [11], [26], [27], [28]. However, PF usually incurs
a large computational cost to ensure positioning accuracy.

Sequence-based methods, such as dynamic time warping
(DTW), exploit correlations between adjacent magnetic field
features to improve positional distinguishability [29], [30].
In the DTW method, the magnetic field map stores the
MFS sequences corresponding to all of the user’s possible
walking trajectories. The MFS observed during a period of
time in the positioning phase forms another sequence, thereby
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transforming the MFM into a sequence similarity calculation
problem. Compared with other sequence-based methods (e.g.,
Smith–Waterman [31]), DTW can cope with the problem of
uneven walking speed of users and has better localization
performance. However, traditional DTW methods cannot cope
with scenarios where users can walk on arbitrary trajectories
(e.g., halls), resulting in large differences in their localization
performance in different indoor areas. To solve this problem,
we have proposed to use PDR to observe the user’s true trajec-
tory and generate all candidate reference MFS sequences [9].
This can be achieved by combining the relative trajectory
from PDR and the grid magnetic field map in real time,
thus delivering a positioning accuracy close to that of a PF.
However, this method still cannot cope with the decrease in
accuracy caused by the flattening phenomenon of magnetic
field feature fluctuations.

At the same time, data-driven artificial intelligence methods
have also been used to solve the MFM problem and were found
to obtain positioning performance superior to model-based
methods [32], [33]. Data-driven methods extract all possible
user trajectories (i.e., different lengths, shapes, and paces)
based on the magnetic field grid map and use the trained net-
work structure to establish the mapping relationship between
the magnetic field sequence and the position, which can
accurately infer the user’s trajectories. Data-driven methods
achieve the best performance in both localization accuracy and
computational efficiency in the real-time matching positioning
stage. However, data-driven methods have relatively high
requirements for the accuracy of the magnetic field map, and
the training cost is also high (i.e., different scenarios require
additional training).

C. Magnetometer Bias Calibration
The measurement accuracy of an environmental MFS is

restricted by the magnetometer being used. Magnetometers
induce bias, scale factor, nonorthogonal, and noise errors [34].
Compared with the combined error of 10–20 milligauss (mG)
arising from other factors, magnetometer bias may cause the
measurement error of an MFS to reach hundreds of mG.
Thus, smartphone-based MFM positioning solutions usually
only consider the magnetometer bias to reduce the complex-
ity of the calibration procedure [9]. Ellipsoid fitting based
on user-specific actions (e.g., the “∞” shape action) is a
commonly used magnetometer bias calibration method. How-
ever, smartphones are prone to electromagnetic effects due to
changes in working conditions, resulting in frequent changes
in the magnetometer bias. Then, it is very unrealistic to
require mass users to actively perform the magnetometer bias
calibration procedure. Many researchers have attempted to use
the differential MFS in the navigation coordinates (n-frame)
to eliminate the effect of magnetometer bias [27]. However,
the differential MFS in the n-frame cannot eliminate the
influence of the magnetometer bias when the magnetometer’s
attitude fluctuates significantly. The essential reason is that
magnetometer biases remain relatively stable in body coordi-
nates (b-frame) rather than n-frame. Our previous work solved
this issue by projecting the reference MFS from the n-frame
to the b-frame [9]. As mentioned above, the existing MFM

positioning scheme cannot completely omit the procedure of
actively calibrating the magnetometer bias, which seriously
limits the progress of magnetic field positioning for solving
indoor positioning problems.

III. OVERVIEW OF THE PROPOSED METHOD

For consumer-grade IMUs, the position drift of the pure
inertial navigation system (INS) quickly reaches several meters
(within a few seconds); this is detrimental to the needs of
practical applications. Thus, it is necessary to extract the
constraint information formed by the pedestrian motion law to
improve the relative positioning ability of the INS. Based on
the periodical footsteps of pedestrians, a high-precision P-POS
consisting of a foot-mounted IMU and a built-in smartphone
IMU [35] can be employed to efficiently collect the magnetic
field map data. Moreover, the speed constraint observations
can be constructed to control the speed error of the built-in
IMU of the smartphone in the online positioning phase; this is
termed the PDR algorithm [10]. The stability and positioning
accuracy of an MFM can be improved by changing the
relative position and attitude of the PDR. In general, consumer-
grade IMUs play indispensable roles as auxiliary means in
smartphone-based indoor MFM positioning schemes.

Fig. 1 shows the flow of an MFM positioning scheme
based on consumer-grade IMUs. In the magnetic field map
generation stage, the foot-mounted INS (Foot-INS) and sparse
control points provide stable, high-precision position informa-
tion, which is used to modify the positioning results of the
smartphone built-in IMU, thereby forming a high-precision
P-POS for the smartphone. To tackle the issue of frequent
changes in the magnetometer bias, here, an automatic calibra-
tion algorithm based on high-precision attitude information
is proposed. More generally, rasterization and linearization
processing methods are proposed to reduce the workload of
data collection while ensuring measurement accuracy.

In the online matching positioning phase, this study pro-
poses using the relative position and attitude from the
INS-based PDR algorithm to correlate the observed MFS,
thus forming a magnetic field profile (MFP). The profile
can then be used to generate the differential MFP in the
b-frame, which eliminates the influence of the magnetometer
bias. To reflect the accuracy level of the position output by
MFM, here, a position noise estimation method is proposed
based on the magnetic field gradient. This method is designed
to improve the accuracy of MFM/PDR integrated position-
ing. More importantly, the scale factor of the step-length
estimation model can be estimated accurately by the filter,
further improving the accuracies of the relative trajectory and
current position predictions. Finally, the proposed MFM/PDR
combined positioning method will reach a state of mutual
assistance and mutual promotion.

IV. MAGNETIC FIELD MAP GENERATION STAGE

The construction methods for magnetic field maps differ
depending on the application requirements; this essentially
comprises a compromise between measurement accuracy and
cost. Therefore, for the application and promotion of MFM
positioning schemes, it is important to develop an economical
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Fig. 1. Block diagram of the consumer IMU-based MFM positioning scheme.

Fig. 2. Structure of P-POS [35].

method that generates highly efficient and precise magnetic
field maps.

A. Determining the Position and Attitude
of the Magnetometer

Considering the requirements of consumer indoor position-
ing accuracy (approximately 1–3 m) and the uniform distrib-
ution of magnetic fields in most areas, here, a WS method
combined with linear interpolation is proposed to generate
a high-resolution magnetic field map [12], [19]. To reduce
the workload of data collection without any loss of resolution
for the resulting MFS, an “S” shape is proposed to collect
magnetic field data; the distance between adjacent trajectories
should be ≤ 2.0 m.

In the proposed data processing phase, the P-POS is used
to determine the position and attitude of the smartphone.
Fig. 2 shows the structure of the P-POS, including a smart-
phone, a foot-mounted IMU, and a small number of control
points. The basic principle of P-POS is given as follows. The
Foot-INS (i.e., foot-mounted IMU-based INS integrated with a
zero-velocity update technique) combined with a small number
of control points (i.e., the coordinate known points) is used
to provide a continuous high-precision position. The precise
positioning of the Foot-INS is integrated with the smartphone’s

built-in IMU-based INS to accurately estimate position and
attitude, similar to GNSS/INS integration in outside environ-
ments. The lever arm between the smartphone built-in INS
and the Foot-INS is solved by capturing a specific phase of
the gait cycle that has a consistent relative pose between a
pedestrian’s wrist and heel. The detailed algorithm of P-POS
can be found in [35]. Test results show that P-POS can provide
decimeter-level positioning and degree-level attitude when the
distance between adjacent control points is 50 m. In this study,
a handheld smartphone replaced the back-mounted IMU in
P-POS, thus requiring the testers to minimize the relative
distance between the phone and the body (e.g., the waist)
during the data collection process.

The traditional WS method achieves efficient data collection
tasks by restricting personal behaviors (such as walking in a
straight line at a uniform speed and keeping the smartphone
oriented parallel to the walking direction of pedestrian) [18].
However, this practice is only suitable for professionals in
small indoor scenarios. When considering the indoor mag-
netic field map data collection with a citywide, the complex
indoor environment and the nonprofessional testers will make
this practice of limiting individual behavior impossible to
implement. P-POS releases individual behavioral constraints
by observing the dynamics of the user’s feet and wrists using
footworn and handheld IMUs. In addition, with the support
of powerful relative positioning capabilities, P-POS requires
only a very small number of control points. Thus, even for
nonprofessional testers in complex indoor environments, the
efficiency of data collection can be greatly improved and
the measurement of decimeter-level position and degree-level
attitude can be achieved.

B. User-Free Magnetometer Bias Calibration
As smartphones are highly integrated electronic devices, it is

very easy for them to generate electromagnetic interference,
thus changing the magnetometer bias. To eliminate this effect,
testers are frequently required to conduct specific actions
(i.e., “∞” movement) to calibrate the magnetometer bias
before collecting magnetic field data [36]. However, in the
absence of supervision, testers will refuse to complete this
specific calibration action. Therefore, an automatic calibration
method for magnetometer bias is necessary to ensure the
quality of the magnetic field map.
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The Earth’s magnetic field comprises the main part of an
ordinary indoor environmental magnetic field, so it is safe to
assume that the mean value of the magnetic field interference
in a local area is zero. Our published work provides ample
validation of this hypothesis [37]. In other words, the average
value of the magnetic field vector observed by the test track
can be considered to be equal to the geomagnetic field vector.
The magnetometer bias does not change over a short period
(e.g., 10 min) [34], so the relationship between the observed
magnetic field and geomagnetic field vectors can be described
as

Mn ≈ 1

k

k∑
i=1

Cn
b,i

(
M̃

b
i − bm

)
(1)

where Mn is the true magnetic field vector, which can be
obtained by querying the International Geomagnetic Reference
Field (IGRF) [38]; M̃

b
i is the observation of the magnetome-

ter; bm is the bias of the magnetometer; Cn
b,i is the direc-

tional cosine matrix from the b-frame to the n-frame, which
comes from P-POS; and k is the number of magnetometer
measurements.

The coordinates of the control points used by P-POS
are usually defined in a local horizontal coordinate system.
This means that the output absolute heading is not equal to
the absolute heading and that the horizontal component of
the magnetic field cannot be accurately obtained. Therefore,
in addition to the vertical component of the MFS, this study
proposes an iterative method for solving the horizontal mag-
netic field intensity component as follows.

1) The initial value of the magnetic field vector Mn
0 can be

obtained by

Mn
0 ≈ 1

k

k∑
i=1

Cn
b,i M̃

b
i . (2)

2) Based on the assumption that the magnetometer bias
does not change over a short time period [34], the
magnetometer bias can then be recalculated as follows:

bm,1 ≈ 1

k

k∑
i=1

(
M̃

b
i − Cb

n,i Mn
0

)
(3)

where “1” is the number of iterations.
3) By substituting bm,1 into 1, it is possible to calculate the

magnetic field vector Mn
1.

4) Steps 2) and 3) can then be repeated until the following
equation is satisfied:∥∥Mn

i−1 − Mn
i

∥∥ < γ (4)

where γ is the threshold for determining the convergence
of the algorithm and i is the number of iterations. Then,
the 3-D MFS of a single position in the n-frame can be
described as

M̂
n
i = Cn

b,i

(
M̃

b
i − b̂m

)
(5)

where M̂
n
i is the estimated magnetic field vector and b̂m

is the calibrated magnetometer bias.

Fig. 3. Generation process of grid magnetic field map. (a) Rasterization.
(b) Linear interpolation.

C. Grid Map Generation

The high sampling rates of magnetometers (e.g., 100 Hz)
and the uneven distribution of the reference trajectories result
in some areas being collected multiple times, while some
areas are not covered. To solve this problem, the interpo-
lation methods, such as the Gaussian model, Kriging, and
bilinear, are used to fill in the magnetic field features of
the uncollected area [39]. As the magnetic field features are
evenly distributed in most areas of the indoor environment,
the influence of local strong magnetic interference is only
about a 1-m radius. Furthermore, the sequence-based MFM
algorithm used in this study can better adapt to the effects of
accidental magnetic field disturbances. Therefore, compared
with better interpolation methods such as the Gaussian model
and Kriging, the linear interpolation method is sufficient to
meet the low-precision positioning needs of mass users (e.g.,
about 1 m). The specific generation method of the grid
magnetic field map is given as follows.

Rasterization: First, a minimum rectangle is generated
according to the estimated coordinates of the reference tra-
jectories. The rectangle is then divided into grids of the same
size (e.g., with a side length of 0.3 m). Second, the observed
MFSs are allocated to these grids according to the estimated
coordinates, and the MFS in the same grid is averaged.
In Fig. 3(a), the red dotted line is the test track and the orange
square is the valid grid.

Linear Interpolation: First, the position coordinates of the
grid to be interpolated are determined [e.g., grid No. 0 in
Fig. 3(b)]. The search radius of the effective grid is then set
(e.g., 1 m). Second, traverses are conducted in eight directions
(east, south, west, north, northwest, northeast, southeast, and
southwest) of grid No. 0. If a grid with a valid MFS is detected,
it will return true (such as grids numbered 5, 6, 7, 13, 15,
and 17). Third, valid grids are used to obtain the magnetic
field features of grid No. 0 by linear interpolation. The linear
interpolation formula can be expressed as follows:

Mn
0 = Mn

5,17 + Mn
6,15 + Mn

7,13

3
(6)

where Mn
i, j = (di−0 Mn

j + d j−0 Mn
i /di−0 + d j−0), Mn

i is the
MFS of the i th grid and di−0 = ((ni − n0) + (ei − e0))

1/2 is
the distance between the i th grid and the 0th grid.
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Finally, a uniformly distributed magnetic field map can be
obtained. The data format of the i th grid is given as follows:

MFFi = {
rn

i Mn
i

}
. (7)

V. REAL-TIME POSITIONING STAGE

Due to the low dimensionality of a magnetic field at
a single position (e.g., three dimensions at most), PDR is
commonly used to improve the positioning performance of
MFM for pedestrians. PDR can effectively reduce the search
area of MFM by predicting the current position. The combined
features of the MFS time series and the relative trajectory
generated by the PDR can also effectively improve position
discrimination.

A. INS-Based PDR
In the step-model-based PDR method, the position error is

separated from the sensor error. Thus, the sensor error cannot
be estimated by correcting the position error. In addition, the
dynamic information between the two steps cannot be obtained
because the output frequency of this method is low (e.g., 2 Hz).
This study, therefore, employs an INS-based PDR method
to generate a relative trajectory to improve the positioning
performance of the MFM method. As the built-in inertial
sensors in smartphones are low quality, small error corrections
(e.g., Earth’s rotation) will be ignored because they cannot
bring significant performance improvements. The simplified
INS mechanization is given by [10], [40]⎧⎪⎨

⎪⎩
rn

k = rn
k−1 + vn

k�tk
vn

k = vn
k−1 + Cn

b,k

(
�vb

k

) − gn�tk
Cn

b,k = Cn
b,k−1

[
I + �θb

k×
] (8)

where rn and vn are the position and velocity vectors in the
n-frame, respectively; Cn

b is the transformation matrix from
the b-frame to the n-frame; gn = [0, 0, − g]T is the
Earth’s gravity vector; �vb

k = ( f̃
b
k − b f,k)�tk is the velocity

increment in the b-frame; f̃
b

and b f are the acceleration and
bias of the accelerometer, respectively; �θb

k = (ω̃b
k − bg,k)�tk

is the angle increment in the b-frame; ω̃b and bg are the angle
rate and bias of the gyroscope, respectively; �t = tk − tk−1 is
the time interval between the (k − 1)th and kth epochs; and
“×” is the cross-product form of a vector.

The navigation performance of the INS mechanization algo-
rithm depends substantially on sensor accuracy. Pedestrian
motion characteristics are used to slow down the cumulative
speed of the position errors for meeting the needs of practical
applications. This study uses the error-state Kalman filter to
fuse the INS and pedestrian motion constraints. The 16-D
error-state variables are defined as

δx = [
δrn δvn φ δbg δba δs

]T
(9)

where δrn and δvn are the position and velocity error vectors
in the n-frame, respectively; φ is the attitude error vector;
δbg and δba are the bias error vectors of the gyroscope and
accelerometer, respectively; and δs is the scale error of the
step length. As the empirical model cannot adapt to different

users, the step scale factor is used as an estimation variable;
the MFM result is used to estimate it effectively.

The discrete linearization of the system error model can be
expressed as follows:{

δxk,k−1 = �k,k−1δxk−1,k−1 + wk

δzk = Hkδxk,k−1 + vk
(10)

where the subscripts k − 1 and k represent the epoch, δz is
the measurement misclosure vector, H is the design matrix,
w is the process noise, v is the measurement noise, and � is
the 16 × 16 state transition matrix [9] as follows:

�k,k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I3 I3�t 03 03 03 03×1

03 I3
(

f n
k×

)
�t 03 Cn

b,k�t 03×1

03 03 I3 −Cn
b,k�t 03 03×1

03 03 03 I3 03 03×1

03 03 03 03 I3 03×1

01×3 01×3 01×3 01×3 01×3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where 03 and I3 are the 3 × 3 zero matrix and identity matrix,
respectively, and 01×3 and 03×1 are the 1 × 3 and 3 × 1 zero
matrices, respectively. When the observations are valid, the
following methods can be used to update the state variables
and their corresponding covariance values:

δ x̂k = δ x̂k,k−1 + K k
(
δzk − Hk x̂k,k−1

)
(12)

Pk = (I − K k Hk)Pk,k−1(I − K k Hk)
T + K k Rk K T

k (13)

K k = Pk,k−1 HT
k

(
Hk Pk,k−1 HT

k + Rk
)−1

. (14)

The pseudo-velocity observations formed by pedestrian motion
constraints can be described as [10]

δzv = v̂b − ṽb = Cb
nδv

n − Cb
n

(
vn×)

ψ − ṽbδs + nv (15)

where v̂b and vn are the velocities of the INS in the b-frame
and n-frame, respectively; nv is the observation noise; and
ṽb are pseudo-velocity observations in the b-frame. When the
state of a pedestrian is determined to be standing, ṽb can be
reasonably considered to be zero. When a user is walking
forward regularly, the lateral and vertical velocities of the body
coordinate system should be zero, and the walking velocity
can be estimated by their step detection and a previously
published empirical step-length estimation model [10]. ṽb can
be described as follows:

ṽb =
[

s · L

tk − tk−1
0 0

]T

(16)

where L is the step length from the empirical model, s is the
scale of the estimated step length, and tk and tk−1 are the times
of the kth and (k − 1)th steps, respectively.

B. MFM Algorithm

In the proposed method, the MFS time series and the
corresponding relative positions from the PDR are correlated
with form a combined feature, called the MFP. Changes in the
relative spatial relationship (such as direction and distance)
between two adjacent MFSs are preserved, which improves
the MFP’s position discrimination.
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Fig. 4. Detailed process of generating a candidate reference trajectory. �n
and �e are the translation parameters, and �θ is the rotation parameter [9].

Based on the relative positions and attitudes estimated by
the PDR, the observed MFP can be expressed as

oMFP =
{

rn
0:k−1

(
Cn

b

)
0:k−1 M̃

b
0:k−1

}
(17)

where M̃b is the output of the magnetometer and k is the
number of sampling points of the observed MFP.

The problem of the MFM positioning can then be simplified
as finding the conversion relationship (i.e., translation and
rotation parameters) between the relative and absolute trajecto-
ries. However, the conversion relationship and the coordinates
of the absolute trajectory are both unknown, so it is not
possible to estimate the translation and rotation parameters
using mathematical analysis methods. An alternative approach
is to generate all possible reference trajectories based on the
relative trajectory by traversing the possible translation and
rotation parameters. Then, the conversion relationship can be
determined according to the similarities between the observed
and reference MFSs corresponding to the candidate reference
trajectories. Fig. 4 shows the detailed process of generating
a candidate reference trajectory. In this way, it is possible to
obtain all possible reference trajectories by setting different
translation and rotation parameters. Then, the j th point in the
i th candidate trajectory and the corresponding cosine matrix
can be expressed as

rn′
i, j = C(�θi)

(
rn

j − rn
0

) + rn
0 + �rn

i (18)(
Cn′

b

)
i, j

=
(

Cn′
n

)
i

(
Cn

b

)
j

(19)

where

C(�θi) =
[

cos(�θi) − sin(�θi)
sin(�θi) cos(�θi)

]
(

Cn′
n

)
i
=

(
C(�θi) 02×1

01×2 1

)

where Δrn = (Δn Δe)T and Δθ are the translation and
rotation parameters, respectively.

As a magnetic field map is composed of uniformly distrib-
uted reference points, the sampling points of the candidate
reference trajectory cannot coincide exactly with the refer-
ence points. Therefore, here, the bilinear interpolation method
is proposed to obtain a higher resolution reference MFS,

Fig. 5. Reference MFS from bilinear interpolation at r(n, e) [12].

as shown in Fig. 5. The corresponding reference MFS of a
given point r(n, e) is

Mn(r) ≈ αMn(r01) + βMn(r00) + γMn(r11) + χMn(r10)

(20)

where

α = (n1 − n)(e − e0)

(n1 − n0)(e1 − e0)
, β = (n1 − n)(e1 − e)

(n1 − n0)(e1 − e0)

γ = (n − n0)(e − e0)

(n1 − n0)(e1 − e0)
, χ = (n − n0)(e1 − e)

(n1 − n0)(e1 − e0)
.

The i th reference MFP can be expressed as

rMFPi =
(

rn′
i,0:k−1

(
Cn′

b

)
i,0:k−1

((
Cn′

b

)T

i,0:k−1
Mn

i,0:k−1

))
.

(21)

As the magnetometer bias comprises a fixed value in the
b-frame over short time frames, the differential MFP in the
b-frame can be used to eliminate the influence of the magne-
tometer bias. To avoid large errors in the selected reference
MFS, averaging processing is performed on the observed and
reference MFPs in the proposed method. The DTW algorithm
is then used to calculate the similarity between the observed
and reference MFPs. The DTW compresses or stretches the
reference axes of the two sequences to be matched such
that two sequences with different lengths will have better
matching results [29]. This will help to solve the problem that
the empirical step model cannot accurately estimate the step
lengths of different users.

C. MFM/PDR Integrated Positioning

In the proposed method, the MFM results are used to control
the position drift of the INS-based PDR. This helps to improve
the estimation accuracy of the relative trajectory (e.g., the scale
of step length) and provides a more accurate location search
area than the pure PDR for the magnetic matching (MM)
method. The position observation equation in the n-frame is
given as follows:

δzr = r̂n − r̃n = δrn + σ r (22)

where r̂n is the estimated position from the INS-based PDR,
r̃n is the result of the MFM, and σ r is the noise of the position
measurement. The gradient and residual error corresponding
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to the MFP can be used to determine the noise of the MFM
results as follows [41]:

σ r = (
HT H

)T
σ0 (23)

σ 0 =
√∑k−1

j=0

∥∥M̃
n
j − Mn

j

∥∥
k

(24)

H = [
H0 · · · Hk−1

]T
(25)

H j =
(

∂ Mn(r j)

∂n

∂ Mn(r j)

∂e

)
∂ r j(ξ )

∂ξ
(26)

where M̃
n

is the output of the magnetometer in the n-frame,
Mn is the reference magnetic field vector in the n-frame from
the magnetic field map, and (∂ Mn(r j )/∂n) and (∂ Mn(r j )/∂e)
are the magnetic field gradients

∂ Mn(r j )

∂n
≈ e − e0

(n1 − n0)(e1 − e0)
(M(r11) − M(r01))

+ e1 − e

(n1 − n0)(e1 − e0)
(M(r10) − M(r00)) (27)

∂ Mn(r j )

∂e
≈ n − n0

(n1 − n0)(e1 − e0)
(M(r11) − M(r10))

+ n1 − n

(n1 − n0)(e1 − e0)
(M(r01) − M(r00)). (28)

(∂ r j (ξ)/∂ξ) is the partial derivative of the absolute position
with respect to the translation and rotation parameters

∂ r j (ξ)

∂ξ
=

[
1 0 − sin(Δθ)Δn j−0 − cos(Δθ)Δe j−0

0 1 cos(Δθ)Δn j−0 − sin(Δθ)Δe j−0

]
(29)

where

ξ = [Δn,Δe,Δθ ]T

r(ξ ) =
[

cos(Δθ) − sin(Δθ)
sin(Δθ) cos(Δθ)

][
Δn j−0

Δe j−0

]
+

[
n0 + Δn
e0 + Δe

]
.

Δn j−0 = n j−n0 is the position increment coming from
INS-based PDR, where n0 is the first point of an
observed MFP.

VI. TEST RESULTS AND ANALYSIS

A. Test Description

Field tests were conducted on the second floor of
the Shilintong International Geospatial Information Science
Research Center of Wuhan University. The test area was
a typical indoor office environment. Fig. 6 shows the real
environment of the test area. As this building was not in
full use at the time of the experiment, many rooms were not
equipped with any office facilities. Therefore, the magnetic
field interference in the corridor area was more obvious than
that in the empty room. The size of the test area was 94 ×
22 m, about 2000 m2. Fig. 7 shows the indoor structure; the
red box shows the test area.

Nine Android smartphones were used, including a Huawei
Mate 20, Xiaomi 8, Oneplus 6T, Huawei P10, Samsung
Galaxy S6, Samsung Galaxy S10, Honor V10, Google Pixel 2,
and Google Pixel 3. The data rates were set at 50 Hz
for the gyroscopes, accelerometers, and magnetometers. The

Fig. 6. Test environment.

Fig. 7. Floor plan. The area covered by the red dotted line represents the
effective test area.

foot-mounted IMU of the P-POS in each case was an
Invensense ICM-20602, and the bias instabilities of the gyro-
scopes and accelerometers were set as 60◦/s and 0.2 mg,
respectively. The data rate of each foot-mounted IMU was
set at 200 Hz. The system times of the smartphones and
foot-mounted IMUs were aligned via Bluetooth communica-
tion. All sensor data were logged into files for postprocessing.

In the magnetic field map generation and real-time position-
ing stages, the P-POS consisted of a foot-mounted IMU and a
smartphone; this was used to provide a high-precision position
and attitude for the smartphone. Due to the limited space,
this article will not evaluate the pose estimation accuracy of
P-POS in detail. For the specific evaluation methods and the
estimation accuracy of the P-POS, please refer to [35].

B. Magnetic Field Map

Three smartphones (Pixel 2, Pixel 3, and Xiaomi 8) were
employed to collect the magnetic field data of the test area,
and the average time spent was 13.7 min. The test area was
approximately 2000 m2; therefore, the average data collec-
tion efficiency of the magnetic field map was approximately
145 m2/min. If the test area was a 50 × 20 open indoor
area (i.e., in extreme cases), the tester followed the S-shaped
walking rule at normal velocity (i.e., walk at a speed of
1.2 m/s and the distance interval between adjacent trajectories
was 2 m), and the data collection efficiency still reached
122 m2/min.

Fig. 8 shows the trajectories of data collection. The blue,
red, and yellow lines represent the trajectories of data collec-
tion in the three regions, and the red dots are the reference
points. The proposed method allows users to walk trajecto-
ries of different shapes and requires 19 reference points in
total. Using the traditional method, 53 straight lines were
required to achieve the same density of data acquisition,
for a total of 106 reference points. The demand for control
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Fig. 8. Trajectories of data collection.

Fig. 9. Magnetic field map using Google Pixel 2. (a) North component.
(b) East component. (c) Vertical component. (d) Magnitude.

points was reduced by 82%. Fig. 9 shows the magnetic field
map constructed by using Google Pixel 2. Although magnetic
field features were collected using different phone poses, the
MFS of adjacent geographic locations shows gentle transitions,
which is consistent with the objective physical phenomena.
We can see that the magnetometer bias was well compensated
and corrected, and P-POS could provide high-precision pose
estimation results.

To further verify the effectiveness of the proposed method,
the magnetic field maps were constructed multiple times using
different smartphones and the differences in MFS at the same
position were used to define the accuracy of the magnetic field
map generation method. Fig. 10 shows the differences between
the magnetic field maps constructed by using Google Pixel 2
and Mi 8. These differences in most regions were around
zero, and the differences in some areas reached approximately
100 mG. This is because the accuracy of P-POS is limited
(approximately decimeter level). Moreover, the MFS decay
with the 3rd power of the spatial distance, small position, and
attitude errors caused obvious MFS deviations near magnetic
field interference sources.

Fig. 11 shows the cumulative distribution function of the
differences between the magnetic field maps constructed by
using different smartphones. Table I summarizes the root-
mean-square (rms) values, alongside 68% and 95% of the
differences in the magnetic field maps constructed by using
different smartphones. The differences in the magnetic field
maps between any two smartphones were <20 mG (rms);
95% of these differences were <40 mG. The differences
in the three directions are not significantly larger than the

Fig. 10. Differences between the magnetic field maps using Mi 8 and Google
Pixel 2. (a) North component. (b) East component. (c) Vertical component.
(d) Magnitude.

Fig. 11. Cumulative distribution function of differences between magnetic
field maps constructed by different smartphones.

TABLE I

RMS AND 68% AND 95% OF THE DIFFERENCES IN THE MAGNETIC FIELD

MAPS CONSTRUCTED USING DIFFERENT SMARTPHONES

magnitude, which indirectly indicates that the attitude provided
by P-POS has high enough accuracy, and the magnetometer
bias is well estimated and compensated. The noise levels of the
built-in magnetometers in most smartphones are approximately
10–20 mG, so the errors caused by P-POS and the map
generation algorithms were relatively very small. Therefore,
the magnetic field map generation method proposed in this
article was shown to be highly efficient and precise.

Table II summarizes currently used magnetic field mapping
methods that have been presented in other papers, including
point-by-point [17], [42], [43], WS [18], and SLAM [24]. The
crowdsourcing methods are not listed in the table because their
main advantage is low labor cost. Moreover, crowdsourcing
methods are very dependent on the real movement trajectories
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TABLE II

MAPPING PERFORMANCE COMPARISON WITH
STATE-OF-THE-ART METHODS

of mass users and have very large random characteristics,
so their efficiency and accuracy cannot be quantitatively
described. According to the comparison, we find that the
proposed method achieves the highest measurement efficiency
and is the only method that does not require active calibration
of the magnetometer bias. The accuracy of the proposed
method is slightly worse than that of the method [42], but
it is sufficient for the needs of pedestrian localization. The
hardware cost of the proposed method includes a foot-mounted
IMU and a smartphone, the cost of the foot-mounted IMU
does not exceed U.S. $10, and the cost of the smartphone can
be ignored to some extent due to the high ownership rate.
Therefore, compared with method in [18], the cost increase of
the proposed method is very limited. As the step of actively
labeling the position cannot be omitted, the proposed method
has a higher complexity than that shown by the method of [20].
However, this does not affect the conclusion that the proposed
method has a better performance than existing methods under
the comprehensive metrics of accuracy, efficiency, cost, com-
plexity, and calibration.

C. Positioning Performance

This section evaluates the positioning accuracy of four
positioning schemes: 1) PDR, as described in section V-A;
2) MFM, as described in Section V-B, in which the relative
trajectory generated by PDR is used to generate the MFP;
3) MFM/PDR, in which PDR is used to generate the MFP,
while the output of the MM is used to control the position
error of the PDR (the noise of the MM output is given a fixed
value); and 4) adaptive MFM/PDR (AMFM/PDR), which is
similar to 3), but differs in that the noise of the MM output is
automatically given by the method described in Section V-C.

In total, 16 tests were conducted using eight different smart-
phones (Mate 20, Mi 8, Oneplus 6T, P10, S6, S10, V10, and
Pixel 2) based on the magnetic field map of Google Pixel 2.
As an MFP does not have a unique identification, the initial
phase of MFM positioning usually relies on other positioning
methods to provide a rough location (such as a position error
< 20 m) to assist in determining the magnetic field fingerprint
map [9]. Here, the initial position was manually given; Wi-Fi/
Bluetooth was used to provide a rough position in the actual
application scenarios.

Fig. 12. Trajectories of reference for PDR, MFM, MFM/PDR, and
AMFM/PDR. (a) V10-1. (b) S10-1. (c) Mi8-1. (d) Pixel2-1.

To simulate the walking habits of ordinary users, the testers
walked in straight trajectories in the corridor area and irreg-
ularly shaped curves in the room area. The trajectories of
the four tests of the four smartphones are shown in Fig. 12;
the other 12 test trajectories were similar. The trajectories
generated by the PDR had different scales and deformation
errors in the different tests. The scale error caused by the
step-length estimation model was greater than the trajectory
shape deformation caused by the heading error. This was
because the heading drift error could be well suppressed by the
attitude filtering method, but the step-length estimation model
could not adapt to different users, due to factors such as the
user’s height, weight, and walking style. Nevertheless, MFM,
MFM/PDR, and AMFM/PDR all achieved stable positioning
performance. Thus, it was shown that the relative trajectory
with error generated by the PDR could effectively assist the
MFM positioning.

Fig. 13 shows the cumulative density function of the posi-
tion errors of the four positioning schemes across 16 tests;
“Mate20-1” is the first test of the Huawei Mate 20. Table III
lists the RMS and 68% and 95% of the positioning error
of the four positioning schemes across 16 tests. The mean
position errors of PDR, MFM, MFM/PDR, and AMFM/PDR
were 6.378, 1.148, 1.085, and 0.812 m, respectively. Com-
pared with MFM, MFM/PDR showed no obvious positioning
performance improvement; in fact, it even performed worse in
some tests (such as S10-2, OnePlus 6T-2, and V10-2). This
may have occurred because unreasonable MFM position noise
may have destroyed the stability of the filter and reduced its
estimation performance, thus resulting in greater positioning
errors. Compared with MFM and MFM/PDR, AMFM/PDR
achieved smaller positioning errors, its positioning perfor-
mance improved by 25% and 29%, respectively. AMFM/PDR
uses reasonable noise for the MFM position; it achieved the
best estimate of data fusion. This confirms the validity of the
magnetic field positioning error estimation method proposed
in this article.
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TABLE III

RMS, 68%, AND 95% OF THE POSITION ERRORS OF PDR, MFM, MFM/PDR, AND AMFM/PDR IN 16 TESTS

Fig. 13. Cumulative density function of position errors for four positioning
schemes over 16 tests. (a) PDR. (b) MFM. (c) MFM/PDR. (d) AMFM/PDR.

The positioning errors of AMFM/PDR in the 16 tests were
distributed between 0.64 and 1.04 m (rms); the floating range
was approximately 0.4 m. Compared with the length of a
pedestrian step (approximately 0.65 m), the fluctuation range
of the positioning error was small. There were no obvious dif-
ferences in positioning performance across the 16 tests when
using different terminals. This was because the differences
in the users’ walking styles were weakened by using the
PDR to estimate their walking trajectories in real time; at the
same time, the differences between different magnetometers
were also weakened by using the differential MFP under the
b-frame system to eliminate each magnetometer’s zero bias.
In addition, the average positioning error of the 16 tests was
0.81 m (rms), showing that the proposed method could obtain
submeter-level positioning in office buildings.

Table IV summarizes currently used algorithms that have
been presented in other papers; those algorithms used magnetic

TABLE IV

POSITIONING PERFORMANCE COMPARISON WITH

THE STATE-OF-THE-ART SCHEMES

field fingerprint-based matching methods and inertial sensors.
Although the test scenarios were different, the test results can
roughly reflect the positioning performances between different
algorithms. The proposed method achieves a higher position-
ing performance than all of the DTW-based studies [11],
[29], [30]. The main improvements of the proposed method
include: 1) the relative trajectory generated by PDR can truly
reflect the user’s walking trajectory and 2) the differential MFP
improves the position discrimination of the MFS and weakens
the influences of errors arising from magnetometer bias and
the inaccurate local magnetic field maps. The proposed method
also achieves a positioning performance similar to those of
PF-based studies [44], [45], [46], [47], [48] but is worse than
the latest method [28]. The possible reasons for [28] to achieve
such impressive positioning accuracy include improvements in
the probabilistic model, large particle numbers (e.g., 10 000),
smaller localization regions, and higher position discrimina-
tion of magnetic field features within the region. However,
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Fig. 14. Mean rms of the position errors of MFM using different grid sizes
in 16 tests.

the accuracy improvement of several decimeters is not obvi-
ous, especially for the mass users’ meter-level positioning
accuracy requirements. Therefore, we can still reach the
conclusion that the proposed method effectively reduces the
computational load while achieving a positioning performance
close to that of the PF-based methods.

D. Parameters Setting for MFM
This section mainly analyzes the impacts of different para-

meter configurations on the positioning performance of the
MFM. These parameters include the resolution of the magnetic
field map, length, deformation error, and scale error of the
MFP. The length of the MFP has been discussed in detail in
many papers [50]. The length of the MFP used in this study
was approximately 13 m. The deformation error of the MFP
mainly refers to the heading angle drift error of the PDR,
which is not described in detail here. The attitude heading
reference systems described in many studies can slow the
heading angle drift to less than 10◦ per 100 m [51]; the
deformation error can be reduced to less than 13∗tan(13/100∗
10) ≈ 0.29 m. Compared with the length of the MFP, the
deformation error in the proposed model was very small.

The resolution of a magnetic field map determines the
position resolution of the corresponding MFM. Based on
ensuring the positioning performance, a reasonable set of mag-
netic field map resolution can effectively reduce the system
cost and storage space required for the magnetic field map.
Fig. 14 shows the mean rms of the position errors of MFM
at different grid sizes across the 16 tests. As the grid size
of the magnetic field map increased from 0.3 to 1.5 m, the
average rms of the position errors of the 16 tests rose from
0.76 to 0.97 m, while the positioning performance dropped
by approximately 27.6%. To achieve the highest positioning
performance, the resolution of a magnetic field map should
theoretically be set to be as small as possible. However, the
accuracy of the reference point coordinates in a magnetic field
map is positively correlated with the cost of data collection.
In practical applications, it is usually necessary to consider

Fig. 15. Mean rms of MFM position errors for different step-length scale
errors across 16 tests.

both the positioning performance and cost to economize the
system while meeting the positioning requirements. In this
study, P-POS provided decimeter-level positions at a very low
cost, so the resolution of the magnetic field map was set
as 0.3 m.

Empirical step-length estimation models cannot adapt to
different users, so the proportional error of the MFP is the
main error source of the MFM in the real-time positioning
stage. Here, simulation methods were used to evaluate the
influence of the scale error of the step-length estimation model
on the MFM positioning performance. First, P-POS was used
to obtain accurate scale parameters for the step-length model.
Then, a model with a known scale error was obtained by
adding different scale errors to this accurate model. Finally,
this step-length estimation model with the error was used for
MFM positioning. Fig. 15 shows the mean rms of the MFM
position errors under different scale errors for the estimated
step length, across 16 tests. The position error of the MFM
gradually increased with increasing proportional error. Nev-
ertheless, a proportional error of <0.3 could still effectively
assist the MFM and positioning. The proportional error of
the empirical step-length estimations model is usually better
than 0.1, so it is reasonable to use an empirical step-length
estimation model to ensure that the MFM works normally [10].
More importantly, MFM/PDR can estimate the proportional
error of the empirical step-length estimation model in real
time, which allows for the model to adapt to different users.

VII. CONCLUSION AND FUTURE WORK

This study focused on providing an efficient and robust
magnetic field positioning solution. By taking advantage of
the relative positioning and attitude estimation abilities of
consumer-grade IMUs, a method was developed for effi-
ciently constructing a stable magnetic field map with real-time
positioning. During the magnetic field map generation stage,
this method used P-POS, comprising a foot-mounted IMU
and a built-in smartphone IMU, to provide decimeter-level
positioning and degree-level attitude (including roll, pitch,
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and heading) for a smartphone. The test results for three
different smartphones showed that the magnetic data collection
efficiency of the proposed method reached 37 m2/min and that
the differences in the magnetic field maps constructed by the
three smartphones were less than 20 mG (rms).

In the real-time positioning stage, the proposed method
uses the position and attitude provided by PDR for the
differential MFP in the b-frame; this can eliminate the impact
of magnetometer bias. A new position noise estimation method
was also proposed based on the magnetic field gradient; it can
effectively improve the accuracy of the MFM/PDR integrated
positioning algorithm. The results of 16 field tests conducted
using eight smartphones delivered positioning errors distrib-
uted between 0.64 and 1.04 m (rms), reaching an average
positioning performance of 0.81 m (rms). These experimental
results verified that the MFM positioning method designed
in this study is less affected by magnetometer bias and can
provide consistent positioning performance across different
smartphone terminals.

As the smartphone-based indoor MFM positioning scheme
proposed in this study is highly dependent on the stability of
PDR, future studies should focus on automatically monitoring
the integrity of PDR and applying the proposed scheme to a
variety of typical smartphone modes (such as texting, calling,
and swinging). In addition, whether the differential MFP can
effectively eliminate the absolute difference of the magnetic
field at different heights described in the work of [42] needs
more sufficient testing and verification, especially in the scene
of height changes caused by the same person holding the
phone. Furthermore, a method for generating magnetic field
maps based on crowd-sourced data should be explored to
further reduce the cost of generating magnetic field maps.
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